Question #174746

For each of the following functions determine the image of S = {x ∈ R : 9 ≤ x2}.

1. f : R → R defined by f(x) = |x|.

2. g : R → R+ defined by g(x) = ex.

3. h : R → R defined by h(x) = x − 9


1
Expert's answer
2021-03-25T08:48:24-0400

S={xR:9x2}S={xR:x29},S={xR:x3,x3}1.f(x)=x,f(3)=3=3f(3)=3=3Image offis{xR:f(x)3}2.g(x)=ex,g(3)=e3g(3)=e3Image ofgis{xR:g(x)e3,g(x)e3}3.h(x)=x9,h(3)=39=12h(3)=39=6Image ofhis{xR:h(x)12,h(x)6}\displaystyle S = \{x \in \mathcal{R}: 9 \leq x^2\}\\ S = \{x \in \mathcal{R}: x^2 \geq 9\},\,\,\, S = \{x \in \mathcal{R}: x \leq -3,\,\, x \geq 3\} \\ 1.\,\,\, f(x) = |x|, \\ f(-3) = |-3| = 3 \\ f(3) = |3| = 3 \\ \textsf{Image of}\,\, f \,\,\textsf{is}\,\, \{x \in \mathcal{R}: f(x) \geq 3\} \\ 2.\,\,\,g(x) = e^x, \\ g(-3) = e^{-3} \\ g(3) = e^{3} \\ \textsf{Image of}\,\, g \,\,\textsf{is}\,\, \{x \in \mathcal{R}: g(x) \leq e^{-3},\,\, g(x) \geq e^{3}\} \\ 3.\,\,\,h(x) = x - 9, \\ h(-3) = -3 - 9 = -12 \\ h(3) = 3 - 9 = -6 \\ \textsf{Image of}\,\, h \,\,\textsf{is}\,\, \{x \in \mathcal{R}: h(x) \leq -12,\,\, h(x) \geq -6\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS