For each of the following functions determine the image of S = {x ∈ R : 9 ≤ x2}.
1. f : R → R defined by f(x) = |x|.
2. g : R → R+ defined by g(x) = ex.
3. h : R → R defined by h(x) = x − 9
S={x∈R:9≤x2}S={x∈R:x2≥9}, S={x∈R:x≤−3, x≥3}1. f(x)=∣x∣,f(−3)=∣−3∣=3f(3)=∣3∣=3Image of f is {x∈R:f(x)≥3}2. g(x)=ex,g(−3)=e−3g(3)=e3Image of g is {x∈R:g(x)≤e−3, g(x)≥e3}3. h(x)=x−9,h(−3)=−3−9=−12h(3)=3−9=−6Image of h is {x∈R:h(x)≤−12, h(x)≥−6}\displaystyle S = \{x \in \mathcal{R}: 9 \leq x^2\}\\ S = \{x \in \mathcal{R}: x^2 \geq 9\},\,\,\, S = \{x \in \mathcal{R}: x \leq -3,\,\, x \geq 3\} \\ 1.\,\,\, f(x) = |x|, \\ f(-3) = |-3| = 3 \\ f(3) = |3| = 3 \\ \textsf{Image of}\,\, f \,\,\textsf{is}\,\, \{x \in \mathcal{R}: f(x) \geq 3\} \\ 2.\,\,\,g(x) = e^x, \\ g(-3) = e^{-3} \\ g(3) = e^{3} \\ \textsf{Image of}\,\, g \,\,\textsf{is}\,\, \{x \in \mathcal{R}: g(x) \leq e^{-3},\,\, g(x) \geq e^{3}\} \\ 3.\,\,\,h(x) = x - 9, \\ h(-3) = -3 - 9 = -12 \\ h(3) = 3 - 9 = -6 \\ \textsf{Image of}\,\, h \,\,\textsf{is}\,\, \{x \in \mathcal{R}: h(x) \leq -12,\,\, h(x) \geq -6\}S={x∈R:9≤x2}S={x∈R:x2≥9},S={x∈R:x≤−3,x≥3}1.f(x)=∣x∣,f(−3)=∣−3∣=3f(3)=∣3∣=3Image offis{x∈R:f(x)≥3}2.g(x)=ex,g(−3)=e−3g(3)=e3Image ofgis{x∈R:g(x)≤e−3,g(x)≥e3}3.h(x)=x−9,h(−3)=−3−9=−12h(3)=3−9=−6Image ofhis{x∈R:h(x)≤−12,h(x)≥−6}
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments