Question #173506

9. (a) Show that the set {( , 3|) 5 15}

2 2

S = x y x + y ≤ is convex.


1
Expert's answer
2021-05-03T05:57:17-0400

Let C be the convex set,


C=xR2u.v9C = { x\in R^2 | u.v\le9}


The set C is convex if for any u,wCu,w \in C the point


tu+(1t)wCtu+(1-t)w \in C for all t[0,1].t\in[0,1].


Let u,wCu,w \in C and t[0,1].t \in [0,1].


(tu+(1t)w).v(tu+(1-t)w).v


=(tu).v+[(1t).w].v= (tu).v+[(1-t).w].v


=tu.v+(1t)w.v= tu.v+(1-t)w.v


t×9+(1t)×9\le t\times 9 + (1-t)\times 9


=9= 9


Therefore, (tu+(1t)w).v9(tu+(1-t)w).v \le 9


Hence, C is convex.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS