9. (a) Show that the set {( , 3|) 5 15}
2 2
S = x y x + y ≤ is convex.
Let C be the convex set,
"C = { x\\in R^2 | u.v\\le9}"
The set C is convex if for any "u,w \\in C" the point
"tu+(1-t)w \\in C" for all "t\\in[0,1]."
Let "u,w \\in C" and "t \\in [0,1]."
"(tu+(1-t)w).v"
"= (tu).v+[(1-t).w].v"
"= tu.v+(1-t)w.v"
"\\le t\\times 9 + (1-t)\\times 9"
"= 9"
Therefore, "(tu+(1-t)w).v \\le 9"
Hence, C is convex.
Comments
Leave a comment