9. (a) Show that the set {( , 3|) 5 15}
2 2
S = x y x + y ≤ is convex.
Let C be the convex set,
C=x∈R2∣u.v≤9C = { x\in R^2 | u.v\le9}C=x∈R2∣u.v≤9
The set C is convex if for any u,w∈Cu,w \in Cu,w∈C the point
tu+(1−t)w∈Ctu+(1-t)w \in Ctu+(1−t)w∈C for all t∈[0,1].t\in[0,1].t∈[0,1].
Let u,w∈Cu,w \in Cu,w∈C and t∈[0,1].t \in [0,1].t∈[0,1].
(tu+(1−t)w).v(tu+(1-t)w).v(tu+(1−t)w).v
=(tu).v+[(1−t).w].v= (tu).v+[(1-t).w].v=(tu).v+[(1−t).w].v
=tu.v+(1−t)w.v= tu.v+(1-t)w.v=tu.v+(1−t)w.v
≤t×9+(1−t)×9\le t\times 9 + (1-t)\times 9≤t×9+(1−t)×9
=9= 9=9
Therefore, (tu+(1−t)w).v≤9(tu+(1-t)w).v \le 9(tu+(1−t)w).v≤9
Hence, C is convex.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments