v : = ( x 1 , x 2 , x 3 ) ∈ R 3 : 3 x 1 − 3 x 2 + x 3 = 0 b a s i s [ 1 0 0 ] , [ 0 − 3 0 ] , [ 0 0 2 ] d i m e n s i o n = 3 b ) 3 x 1 − 2 x 2 + x 3 = 0 4 x 1 + 5 x 2 = 0 x 2 = − 4 5 x 1 3 x 1 − 2. − 4 5 x 1 + x 3 = 0 3 x 1 + 8 5 x 1 + x 3 = 0 23 5 x 1 + x 3 = 0 x 3 = − 23 5 b a s i s [ 1 0 0 ] , [ 0 − 4 5 0 ] , [ 0 0 − 23 5 ] d i m e n s i o n = 3 v :={(x_1,x_2,x_3) \in R^3: 3x_1-3x_2+x_3=0}\\
basis\\
\begin{bmatrix}
1 \\
0\\
0
\end{bmatrix},\begin{bmatrix}
0 \\
-3\\
0
\end{bmatrix},\begin{bmatrix}
0\\
0\\
2
\end{bmatrix}\\
dimension=3\\
b)
3x_1-2x_2+x_3=0\\
4x_1+5x_2=0\\
x_2=\frac{-4}{5}x_1\\
3x_1-2. \frac{-4}{5}x_1 +x_3=0\\
3x_1+\frac{8}{5}x_1 +x_3=0\\
\frac{23}{5}x_1 +x_3=0\\
x_3=\frac{-23}{5}\\
basis
\begin{bmatrix}
1\\
0\\
0
\end{bmatrix},\begin{bmatrix}
0\\
\frac{-4}{5}\\
0
\end{bmatrix},\begin{bmatrix}
0\\
0\\
\frac{-23}{5}
\end{bmatrix}\\
dimension=3 v := ( x 1 , x 2 , x 3 ) ∈ R 3 : 3 x 1 − 3 x 2 + x 3 = 0 ba s i s ⎣ ⎡ 1 0 0 ⎦ ⎤ , ⎣ ⎡ 0 − 3 0 ⎦ ⎤ , ⎣ ⎡ 0 0 2 ⎦ ⎤ d im e n s i o n = 3 b ) 3 x 1 − 2 x 2 + x 3 = 0 4 x 1 + 5 x 2 = 0 x 2 = 5 − 4 x 1 3 x 1 − 2. 5 − 4 x 1 + x 3 = 0 3 x 1 + 5 8 x 1 + x 3 = 0 5 23 x 1 + x 3 = 0 x 3 = 5 − 23 ba s i s ⎣ ⎡ 1 0 0 ⎦ ⎤ , ⎣ ⎡ 0 5 − 4 0 ⎦ ⎤ , ⎣ ⎡ 0 0 5 − 23 ⎦ ⎤ d im e n s i o n = 3
Comments