Let V be a finite dimensional inner product space over the field C of complex
numbers. Suppose B = {x1, x2, . . . , xn} is an orthonormal basis of V .
Prove that for all x, y ∈ V ,
(x|y) = Xn
i=1
(x|xi)(y|xi).
If "B=\\{u_1,u_2,...,u_n\\}" is a basis of an n -dimensional inner product space "V" , then
"x=x_1u_1+x_2u_2+,...+x_nu_n"
"x=y_1u_1+y_2u_2+,...+y_nu_n"
So:
"\\langle x,y \\rangle=\\langle \\displaystyle \\sum _{i=1}^nx_iu_i,\\displaystyle \\sum _{j=1}^ny_ju_j \\rangle"
Comments
Leave a comment