π: β3ββ3 defined by π(π₯1,π₯2,π₯3)=(π₯1+π₯2,π₯2+π₯3,π₯3+π₯1).
"T=\\begin{pmatrix}\n 1 & 1 & 0\\\\\n 0 & 1 & 1\\\\\n 1 & 0 & 1\n\\end{pmatrix}\\\\\ndet(T)=1\\begin{vmatrix}\n 1 & 0 \\\\\n 0 & 1\n\\end{vmatrix}-1\\begin{vmatrix}\n 0 & 1 \\\\\n 1 & 1\n\\end{vmatrix}+0\\\\\ndet(T)=2,\\\\\n \\text{then, T is invertible}\\\\\n\\text{Augmented matrix of T is,}\\\\\n\\begin{pmatrix}\n 1 & 1 & 0 & & 1 & 0 & 0\\\\\n 0 & 1 & 1 & & 0 & 1 & 0\\\\\n 1 & 0 & 1 & & 0 & 0 & 1\n\\end{pmatrix} \\\\-R_1+R_3 \\implies R_3\\\\\n\\begin{pmatrix}\n 1 & 1 & 0 & & 1 & 0 & 0\\\\\n 0 & 1 & 1 & & 0 & 1 & 0\\\\\n 0 & -1 & 1 & & -1 & 0 & 1\n\\end{pmatrix} \\\\R_3+R_1 \\implies R_1\\\\\n\\begin{pmatrix}\n 1 & 0 & 1 & & 0 & 0 & 1\\\\\n 0 & 1 & 1 & & 0 & 1 & 0\\\\\n 0 & -1 & 1 & & -1 & 0 & 1\n\\end{pmatrix} \\\\R_2+R_3 \\implies R_3\\\\\n\\begin{pmatrix}\n 1 & 0 & 1 & & 0 & 0 & 1\\\\\n 0 & 1 & 1 & & 0 & 1 & 0\\\\\n 0 & 0 & 2 & & -1 & 1 & 1\n\\end{pmatrix} \\\\ \\frac{1}{2}R_3\\\\\n\\begin{pmatrix}\n 1 & 0 & 1 & & 0 & 0 & 1\\\\\n 0 & 1 & 1 & & 0 & 1 & 0\\\\\n 0 & 0 & 1 & & -\\frac{1}{2} & \\frac{1}{2} & \\frac{1}{2} \n\\end{pmatrix} \\\\\n-R_3+R_1 \\implies R_1\\\\\n-R_3+R_2 \\implies R_2\\\\\n\\begin{pmatrix}\n 1 & 0 & 0 & & \\frac{1}{2} & -\\frac{1}{2} & \\frac{3}{2} \\\\\n 0 & 1 & 0 & & \\frac{1}{2} & \\frac{3}{2} & -\\frac{1}{2}\\\\\n 0 & 0 & 1 & & -\\frac{1}{2} & \\frac{1}{2} & \\frac{1}{2} \n\\end{pmatrix} \\\\\n\nT^{-1}=\\begin{pmatrix}\n\\frac{1}{2} & -\\frac{1}{2} & \\frac{3}{2} \\\\\n\\frac{1}{2} & \\frac{3}{2} & -\\frac{1}{2}\\\\\n -\\frac{1}{2} & \\frac{1}{2} & \\frac{1}{2} \n\\end{pmatrix} \\\\"
Comments
Leave a comment