Orthonormalize the set of the vectors v1 = "\\begin{bmatrix}\n 1 \\\\\n 0 \\\\\ni\n\\end{bmatrix}" and v2 = "\\begin{bmatrix}\n 2 \\\\\n 1 \\\\ \n1 + i\n\\end{bmatrix}"
According to the Gram-Schmidt process, uk = vk - "\\sum_{j - 1}^{k - 1} proj_{uj}(v_k)" where
"proj_u(v) = \\frac{u*v}{u * u}u"
The normalized vector is "e_k = \\frac{u_k}{\\sqrt{u_k*u_k}}"
step1: "u_1 = v_! =" "\\begin{bmatrix}\n 1 \\\\\n 0 \\\\\ni\n\\end{bmatrix}"
"e_1 = \\frac{u_1}{\\sqrt{u_1*u_1}} = \\begin{bmatrix}\n \\frac{\\sqrt{2}}{2} \\\\\n 0 \\\\\n \\frac{\\sqrt{2}i}{2} \n\\end{bmatrix}"
step2: "u_2 = v_2 - \\frac{u_1*v_2}{u_1*u_1}u_1 = \\begin{bmatrix}\n \\frac{1}{2} - \\frac{i}{2} \\\\\n 1 \\\\\n\\frac{3}{2} - \\frac{i}{2} \n\\end{bmatrix}"
"e_2 = \\frac{u_2}{\\sqrt{u_2*u_2}} = u_2 = v_2 - \\frac{u_1*v_2}{u_1*u_1}u_1 = \\begin{bmatrix}\n \\frac{1}{4} - \\frac{i}{4} \\\\\n \\frac{1}{2} \\\\\n\\frac{3}{4} - \\frac{i}{4} \n\\end{bmatrix}"
Answer: the set of orthonormal vectors is
"e_1 = \\begin{bmatrix}\n \\frac{\\sqrt{2}}{2} \\\\\n 0 \\\\\n \\frac{\\sqrt{2}i}{2} \n\\end{bmatrix}", "e_2 = \\begin{bmatrix}\n \\frac{1}{4} - \\frac{i}{4} \\\\\n \\frac{1}{2} \\\\\n\\frac{3}{4} - \\frac{i}{4} \n\\end{bmatrix}"
Comments
Leave a comment