Orthonormalize the set of the vectors v1 = ⎣⎡10i⎦⎤ and v2 = ⎣⎡211+i⎦⎤
According to the Gram-Schmidt process, uk = vk - ∑j−1k−1projuj(vk) where
proju(v)=u∗uu∗vu
The normalized vector is ek=uk∗ukuk
step1: u1=v!= ⎣⎡10i⎦⎤
e1=u1∗u1u1=⎣⎡22022i⎦⎤
step2: u2=v2−u1∗u1u1∗v2u1=⎣⎡21−2i123−2i⎦⎤
e2=u2∗u2u2=u2=v2−u1∗u1u1∗v2u1=⎣⎡41−4i2143−4i⎦⎤
Answer: the set of orthonormal vectors is
e1=⎣⎡22022i⎦⎤, e2=⎣⎡41−4i2143−4i⎦⎤
Comments