Question #151362
Consider C^n, with the standard inner product. Find an orthonormal basis for the subspace spanned by v1=(1, 0, i) and v2=(2, 1, 1+i)
1
Expert's answer
2020-12-20T18:25:29-0500


Orthonormalize the set of the vectors v1 = [10i]\begin{bmatrix} 1 \\ 0 \\ i \end{bmatrix} and v2 = [211+i]\begin{bmatrix} 2 \\ 1 \\ 1 + i \end{bmatrix}

According to the Gram-Schmidt process, uk = vk - j1k1projuj(vk)\sum_{j - 1}^{k - 1} proj_{uj}(v_k) where

proju(v)=uvuuuproj_u(v) = \frac{u*v}{u * u}u

The normalized vector is ek=ukukuke_k = \frac{u_k}{\sqrt{u_k*u_k}}


step1: u1=v!=u_1 = v_! = [10i]\begin{bmatrix} 1 \\ 0 \\ i \end{bmatrix}


e1=u1u1u1=[2202i2]e_1 = \frac{u_1}{\sqrt{u_1*u_1}} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}i}{2} \end{bmatrix}



step2: u2=v2u1v2u1u1u1=[12i2132i2]u_2 = v_2 - \frac{u_1*v_2}{u_1*u_1}u_1 = \begin{bmatrix} \frac{1}{2} - \frac{i}{2} \\ 1 \\ \frac{3}{2} - \frac{i}{2} \end{bmatrix}


e2=u2u2u2=u2=v2u1v2u1u1u1=[14i41234i4]e_2 = \frac{u_2}{\sqrt{u_2*u_2}} = u_2 = v_2 - \frac{u_1*v_2}{u_1*u_1}u_1 = \begin{bmatrix} \frac{1}{4} - \frac{i}{4} \\ \frac{1}{2} \\ \frac{3}{4} - \frac{i}{4} \end{bmatrix}


Answer: the set of orthonormal vectors is


e1=[2202i2]e_1 = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}i}{2} \end{bmatrix}, e2=[14i41234i4]e_2 = \begin{bmatrix} \frac{1}{4} - \frac{i}{4} \\ \frac{1}{2} \\ \frac{3}{4} - \frac{i}{4} \end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS