Since we need matrix A є M3x3 (F) which is orthogonal, we want orthonormal basis for F3 whose first vector is given row "(1\/3; 2\/3;2\/3)" (because row of an orthogonal matrix M form an orthonormal basis for Fn).
Let "\\gamma = {\\{(1\/3, 2\/3, 2\/3), (1,0,0), (0,1,0)}\\}" and it be ordered basis for F3 with given row as first element.
Set "\\omega1 = (1\/3,2\/3,2\/3), \\omega2 = (1,0,0), \\omega3 =(0,1,0)" and use Gram-Schmidt orthogonalization process to get orthogonal basis for F3 .
"\\upsilon2 = \\omega2 - \\upsilon1 * <\\omega2, \\upsilon1>\/<\\upsilon1, \\upsilon1> ="
"= (1,0,0) - (1\/3,2\/3,2\/3)*(1\/3)\/(1\/9+4\/9+4\/9)"
"=(1-1\/9,0-2\/9, 0-2\/9) = (8\/9, -2\/9, -2\/9)" "= (1,0,0 ) - 1\/3*(1\/3,2\/3,2\/3)"
"\\upsilon3 = \\omega3 - \\upsilon1 * <\\omega3, \\upsilon1>\/<\\upsilon1, \\upsilon1> -\\upsilon2 * <\\omega3, \\upsilon2>\/<\\upsilon2, \\upsilon2> ="
"= (0,1,0) - (1\/3, 2\/3, 2\/3)*(2\/3)\/(1\/9+4\/9+2\/9) - (8\/9,-2\/9,-2\/9)*(-2\/9)\/(64\/81+4\/81+4\/81)""=(0,1,0) - 2\/3 *(1\/3,2\/3,2\/3) +1\/4*(8\/9, -2\/9,-2\/9)" "="
"= (0 - 2\/9+8\/36, 1-4\/9-2\/36, 0 - 4\/9-2\/36)"
"= (0, 1\/2, -1\/2)"
"\\upsilon1,\\upsilon2, \\upsilon3" is now orthogonal basis which only needs to be normalized.
Define "ui = \\upsilon i\/||\\upsilon i|| for" i=1,2,3
"\\upsilon1" is normal yet, so u1 = "\\upsilon1" = (1/3, 2/3, 2/3)
"u2 = \\upsilon2\/||\\upsilon2||"
"=(8\/9,-2\/9,-2\/9)\/\\sqrt{\\smash[b]{8\/9*8\/9+(-2)\/9*(-2)\/9 +(-2)\/9*(-2)\/9}}"
"= (8\/9,-2\/9,-2\/9)\/(2*\\sqrt{\\smash[b]2}\/3)"
"= (2*\\sqrt{\\smash[b]2}\/3, -\\sqrt{\\smash[b]2}\/6, -\\sqrt{\\smash[b]2}\/6)"
"u3 = \\upsilon3\/||\\upsilon3||"
"=(0,1\/2,-1\/2)\/\\sqrt{\\smash[b]{0+1\/2*1\/2 +(-1)\/2*(-1)\/2}}"
"= (0,1\/2,-1\/2)\/(1\/\\sqrt{\\smash[b]2})"
"= (0, \\sqrt{\\smash[b]2}\/2, -\\sqrt{\\smash[b]2}\/2)"
Now we have orthonormal basis
"\\{ (1\/3, 2\/3, 2\/3), (2*\\sqrt{\\smash[b]2}\/3, -\\sqrt{\\smash[b]2}\/6, -\\sqrt{\\smash[b]2}\/6) ,(0, \\sqrt{\\smash[b]2}\/2, -\\sqrt{\\smash[b]2}\/2) \\}"and the only one thing we need to do is to define the matrix with rows being the vectors from that basis:
"\\begin{pmatrix}\n {1 \\over 3} & {2 \\over 3} & {2 \\over 3} \\\\\n {2* \\sqrt{\\smash[b]2}\\over 3} & {-\\sqrt{\\smash[b]2} \\over 6} & {-\\sqrt{\\smash[b]2} \\over 6}\\\\\n 0 & {\\sqrt{\\smash[b]2} \\over 2} & {-\\sqrt{\\smash[b]2} \\over 2}\n\\end{pmatrix}"
Comments
Leave a comment