Question #150985
Find an orthogonal matrix P whose first row is u1=(1/3, 2/3, 2/3)
1
Expert's answer
2020-12-15T03:14:07-0500

Since we need matrix A є M3x3 (F) which is orthogonal, we want orthonormal basis for F3 whose first vector is given row (1/3;2/3;2/3)(1/3; 2/3;2/3) (because row of an orthogonal matrix M form an orthonormal basis for Fn).

Let γ={(1/3,2/3,2/3),(1,0,0),(0,1,0)}\gamma = {\{(1/3, 2/3, 2/3), (1,0,0), (0,1,0)}\} and it be ordered basis for F3 with given row as first element.

Set ω1=(1/3,2/3,2/3),ω2=(1,0,0),ω3=(0,1,0)\omega1 = (1/3,2/3,2/3), \omega2 = (1,0,0), \omega3 =(0,1,0) and use Gram-Schmidt orthogonalization process to get orthogonal basis for F3 .


υ1=ω1=(1/3,2/3,2/3)\upsilon1 = \omega1 = (1/3, 2/3, 2/3)

υ2=ω2υ1<ω2,υ1>/<υ1,υ1>=\upsilon2 = \omega2 - \upsilon1 * <\omega2, \upsilon1>/<\upsilon1, \upsilon1> =

=(1,0,0)(1/3,2/3,2/3)(1/3)/(1/9+4/9+4/9)= (1,0,0) - (1/3,2/3,2/3)*(1/3)/(1/9+4/9+4/9)

=(11/9,02/9,02/9)=(8/9,2/9,2/9)=(1-1/9,0-2/9, 0-2/9) = (8/9, -2/9, -2/9) =(1,0,0)1/3(1/3,2/3,2/3)= (1,0,0 ) - 1/3*(1/3,2/3,2/3)

υ3=ω3υ1<ω3,υ1>/<υ1,υ1>υ2<ω3,υ2>/<υ2,υ2>=\upsilon3 = \omega3 - \upsilon1 * <\omega3, \upsilon1>/<\upsilon1, \upsilon1> -\upsilon2 * <\omega3, \upsilon2>/<\upsilon2, \upsilon2> =

=(0,1,0)(1/3,2/3,2/3)(2/3)/(1/9+4/9+2/9)(8/9,2/9,2/9)(2/9)/(64/81+4/81+4/81)= (0,1,0) - (1/3, 2/3, 2/3)*(2/3)/(1/9+4/9+2/9) - (8/9,-2/9,-2/9)*(-2/9)/(64/81+4/81+4/81)=(0,1,0)2/3(1/3,2/3,2/3)+1/4(8/9,2/9,2/9)=(0,1,0) - 2/3 *(1/3,2/3,2/3) +1/4*(8/9, -2/9,-2/9) ==

=(02/9+8/36,14/92/36,04/92/36)= (0 - 2/9+8/36, 1-4/9-2/36, 0 - 4/9-2/36)

=(0,1/2,1/2)= (0, 1/2, -1/2)

υ1,υ2,υ3\upsilon1,\upsilon2, \upsilon3 is now orthogonal basis which only needs to be normalized.

Define ui=υi/υiforui = \upsilon i/||\upsilon i|| for i=1,2,3

υ1\upsilon1 is normal yet, so u1 = υ1\upsilon1 = (1/3, 2/3, 2/3)

u2=υ2/υ2u2 = \upsilon2/||\upsilon2||

=(8/9,2/9,2/9)/8/98/9+(2)/9(2)/9+(2)/9(2)/9=(8/9,-2/9,-2/9)/\sqrt{\smash[b]{8/9*8/9+(-2)/9*(-2)/9 +(-2)/9*(-2)/9}}

=(8/9,2/9,2/9)/(22/3)= (8/9,-2/9,-2/9)/(2*\sqrt{\smash[b]2}/3)

=(22/3,2/6,2/6)= (2*\sqrt{\smash[b]2}/3, -\sqrt{\smash[b]2}/6, -\sqrt{\smash[b]2}/6)

u3=υ3/υ3u3 = \upsilon3/||\upsilon3||

=(0,1/2,1/2)/0+1/21/2+(1)/2(1)/2=(0,1/2,-1/2)/\sqrt{\smash[b]{0+1/2*1/2 +(-1)/2*(-1)/2}}

=(0,1/2,1/2)/(1/2)= (0,1/2,-1/2)/(1/\sqrt{\smash[b]2})

=(0,2/2,2/2)= (0, \sqrt{\smash[b]2}/2, -\sqrt{\smash[b]2}/2)

Now we have orthonormal basis

{(1/3,2/3,2/3),(22/3,2/6,2/6),(0,2/2,2/2)}\{ (1/3, 2/3, 2/3), (2*\sqrt{\smash[b]2}/3, -\sqrt{\smash[b]2}/6, -\sqrt{\smash[b]2}/6) ,(0, \sqrt{\smash[b]2}/2, -\sqrt{\smash[b]2}/2) \}

and the only one thing we need to do is to define the matrix with rows being the vectors from that basis:

(132323223262602222)\begin{pmatrix} {1 \over 3} & {2 \over 3} & {2 \over 3} \\ {2* \sqrt{\smash[b]2}\over 3} & {-\sqrt{\smash[b]2} \over 6} & {-\sqrt{\smash[b]2} \over 6}\\ 0 & {\sqrt{\smash[b]2} \over 2} & {-\sqrt{\smash[b]2} \over 2} \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS