Since we need matrix A є M3x3 (F) which is orthogonal, we want orthonormal basis for F3 whose first vector is given row ( 1 / 3 ; 2 / 3 ; 2 / 3 ) (1/3; 2/3;2/3) ( 1/3 ; 2/3 ; 2/3 ) (because row of an orthogonal matrix M form an orthonormal basis for Fn ).
Let γ = { ( 1 / 3 , 2 / 3 , 2 / 3 ) , ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) } \gamma = {\{(1/3, 2/3, 2/3), (1,0,0), (0,1,0)}\} γ = {( 1/3 , 2/3 , 2/3 ) , ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) } and it be ordered basis for F3 with given row as first element.
Set ω 1 = ( 1 / 3 , 2 / 3 , 2 / 3 ) , ω 2 = ( 1 , 0 , 0 ) , ω 3 = ( 0 , 1 , 0 ) \omega1 = (1/3,2/3,2/3), \omega2 = (1,0,0), \omega3 =(0,1,0) ω 1 = ( 1/3 , 2/3 , 2/3 ) , ω 2 = ( 1 , 0 , 0 ) , ω 3 = ( 0 , 1 , 0 ) and use Gram-Schmidt orthogonalization process to get orthogonal basis for F3 .
υ 1 = ω 1 = ( 1 / 3 , 2 / 3 , 2 / 3 ) \upsilon1 = \omega1 = (1/3, 2/3, 2/3) υ 1 = ω 1 = ( 1/3 , 2/3 , 2/3 ) υ 2 = ω 2 − υ 1 ∗ < ω 2 , υ 1 > / < υ 1 , υ 1 > = \upsilon2 = \omega2 - \upsilon1 * <\omega2, \upsilon1>/<\upsilon1, \upsilon1> = υ 2 = ω 2 − υ 1 ∗ < ω 2 , υ 1 > / < υ 1 , υ 1 >=
= ( 1 , 0 , 0 ) − ( 1 / 3 , 2 / 3 , 2 / 3 ) ∗ ( 1 / 3 ) / ( 1 / 9 + 4 / 9 + 4 / 9 ) = (1,0,0) - (1/3,2/3,2/3)*(1/3)/(1/9+4/9+4/9) = ( 1 , 0 , 0 ) − ( 1/3 , 2/3 , 2/3 ) ∗ ( 1/3 ) / ( 1/9 + 4/9 + 4/9 )
= ( 1 − 1 / 9 , 0 − 2 / 9 , 0 − 2 / 9 ) = ( 8 / 9 , − 2 / 9 , − 2 / 9 ) =(1-1/9,0-2/9, 0-2/9) = (8/9, -2/9, -2/9) = ( 1 − 1/9 , 0 − 2/9 , 0 − 2/9 ) = ( 8/9 , − 2/9 , − 2/9 ) = ( 1 , 0 , 0 ) − 1 / 3 ∗ ( 1 / 3 , 2 / 3 , 2 / 3 ) = (1,0,0 ) - 1/3*(1/3,2/3,2/3) = ( 1 , 0 , 0 ) − 1/3 ∗ ( 1/3 , 2/3 , 2/3 )
υ 3 = ω 3 − υ 1 ∗ < ω 3 , υ 1 > / < υ 1 , υ 1 > − υ 2 ∗ < ω 3 , υ 2 > / < υ 2 , υ 2 > = \upsilon3 = \omega3 - \upsilon1 * <\omega3, \upsilon1>/<\upsilon1, \upsilon1> -\upsilon2 * <\omega3, \upsilon2>/<\upsilon2, \upsilon2> = υ 3 = ω 3 − υ 1 ∗ < ω 3 , υ 1 > / < υ 1 , υ 1 > − υ 2 ∗ < ω 3 , υ 2 > / < υ 2 , υ 2 >=
= ( 0 , 1 , 0 ) − ( 1 / 3 , 2 / 3 , 2 / 3 ) ∗ ( 2 / 3 ) / ( 1 / 9 + 4 / 9 + 2 / 9 ) − ( 8 / 9 , − 2 / 9 , − 2 / 9 ) ∗ ( − 2 / 9 ) / ( 64 / 81 + 4 / 81 + 4 / 81 ) = (0,1,0) - (1/3, 2/3, 2/3)*(2/3)/(1/9+4/9+2/9) - (8/9,-2/9,-2/9)*(-2/9)/(64/81+4/81+4/81) = ( 0 , 1 , 0 ) − ( 1/3 , 2/3 , 2/3 ) ∗ ( 2/3 ) / ( 1/9 + 4/9 + 2/9 ) − ( 8/9 , − 2/9 , − 2/9 ) ∗ ( − 2/9 ) / ( 64/81 + 4/81 + 4/81 ) = ( 0 , 1 , 0 ) − 2 / 3 ∗ ( 1 / 3 , 2 / 3 , 2 / 3 ) + 1 / 4 ∗ ( 8 / 9 , − 2 / 9 , − 2 / 9 ) =(0,1,0) - 2/3 *(1/3,2/3,2/3) +1/4*(8/9, -2/9,-2/9) = ( 0 , 1 , 0 ) − 2/3 ∗ ( 1/3 , 2/3 , 2/3 ) + 1/4 ∗ ( 8/9 , − 2/9 , − 2/9 ) = = =
= ( 0 − 2 / 9 + 8 / 36 , 1 − 4 / 9 − 2 / 36 , 0 − 4 / 9 − 2 / 36 ) = (0 - 2/9+8/36, 1-4/9-2/36, 0 - 4/9-2/36) = ( 0 − 2/9 + 8/36 , 1 − 4/9 − 2/36 , 0 − 4/9 − 2/36 )
= ( 0 , 1 / 2 , − 1 / 2 ) = (0, 1/2, -1/2) = ( 0 , 1/2 , − 1/2 )
υ 1 , υ 2 , υ 3 \upsilon1,\upsilon2, \upsilon3 υ 1 , υ 2 , υ 3 is now orthogonal basis which only needs to be normalized.
Define u i = υ i / ∣ ∣ υ i ∣ ∣ f o r ui = \upsilon i/||\upsilon i|| for u i = υ i /∣∣ υ i ∣∣ f or i=1,2,3
υ 1 \upsilon1 υ 1 is normal yet, so u1 = υ 1 \upsilon1 υ 1 = (1/3, 2/3, 2/3)
u 2 = υ 2 / ∣ ∣ υ 2 ∣ ∣ u2 = \upsilon2/||\upsilon2|| u 2 = υ 2/∣∣ υ 2∣∣
= ( 8 / 9 , − 2 / 9 , − 2 / 9 ) / 8 / 9 ∗ 8 / 9 + ( − 2 ) / 9 ∗ ( − 2 ) / 9 + ( − 2 ) / 9 ∗ ( − 2 ) / 9 =(8/9,-2/9,-2/9)/\sqrt{\smash[b]{8/9*8/9+(-2)/9*(-2)/9 +(-2)/9*(-2)/9}} = ( 8/9 , − 2/9 , − 2/9 ) / 8/9 ∗ 8/9 + ( − 2 ) /9 ∗ ( − 2 ) /9 + ( − 2 ) /9 ∗ ( − 2 ) /9
= ( 8 / 9 , − 2 / 9 , − 2 / 9 ) / ( 2 ∗ 2 / 3 ) = (8/9,-2/9,-2/9)/(2*\sqrt{\smash[b]2}/3) = ( 8/9 , − 2/9 , − 2/9 ) / ( 2 ∗ 2 /3 )
= ( 2 ∗ 2 / 3 , − 2 / 6 , − 2 / 6 ) = (2*\sqrt{\smash[b]2}/3, -\sqrt{\smash[b]2}/6, -\sqrt{\smash[b]2}/6) = ( 2 ∗ 2 /3 , − 2 /6 , − 2 /6 )
u 3 = υ 3 / ∣ ∣ υ 3 ∣ ∣ u3 = \upsilon3/||\upsilon3|| u 3 = υ 3/∣∣ υ 3∣∣
= ( 0 , 1 / 2 , − 1 / 2 ) / 0 + 1 / 2 ∗ 1 / 2 + ( − 1 ) / 2 ∗ ( − 1 ) / 2 =(0,1/2,-1/2)/\sqrt{\smash[b]{0+1/2*1/2 +(-1)/2*(-1)/2}} = ( 0 , 1/2 , − 1/2 ) / 0 + 1/2 ∗ 1/2 + ( − 1 ) /2 ∗ ( − 1 ) /2
= ( 0 , 1 / 2 , − 1 / 2 ) / ( 1 / 2 ) = (0,1/2,-1/2)/(1/\sqrt{\smash[b]2}) = ( 0 , 1/2 , − 1/2 ) / ( 1/ 2 )
= ( 0 , 2 / 2 , − 2 / 2 ) = (0, \sqrt{\smash[b]2}/2, -\sqrt{\smash[b]2}/2) = ( 0 , 2 /2 , − 2 /2 )
Now we have orthonormal basis
{ ( 1 / 3 , 2 / 3 , 2 / 3 ) , ( 2 ∗ 2 / 3 , − 2 / 6 , − 2 / 6 ) , ( 0 , 2 / 2 , − 2 / 2 ) } \{ (1/3, 2/3, 2/3), (2*\sqrt{\smash[b]2}/3, -\sqrt{\smash[b]2}/6, -\sqrt{\smash[b]2}/6) ,(0, \sqrt{\smash[b]2}/2, -\sqrt{\smash[b]2}/2) \} {( 1/3 , 2/3 , 2/3 ) , ( 2 ∗ 2 /3 , − 2 /6 , − 2 /6 ) , ( 0 , 2 /2 , − 2 /2 )} and the only one thing we need to do is to define the matrix with rows being the vectors from that basis:
( 1 3 2 3 2 3 2 ∗ 2 3 − 2 6 − 2 6 0 2 2 − 2 2 ) \begin{pmatrix}
{1 \over 3} & {2 \over 3} & {2 \over 3} \\
{2* \sqrt{\smash[b]2}\over 3} & {-\sqrt{\smash[b]2} \over 6} & {-\sqrt{\smash[b]2} \over 6}\\
0 & {\sqrt{\smash[b]2} \over 2} & {-\sqrt{\smash[b]2} \over 2}
\end{pmatrix} ⎝ ⎛ 3 1 3 2 ∗ 2 0 3 2 6 − 2 2 2 3 2 6 − 2 2 − 2 ⎠ ⎞
Comments