These tree points lie on the straight line "y=2x". The power of polynomial is 1. If we will find polynomial with power 2 as "y=ax^2+bx+c" we will
receive "a=0, b=2, c=0", because parabola can have only two roots,
and "y=2x":
"\\begin{cases}\n4a+2b+c=4\\\\\n9a+3b+c=6\\\\\n25a+5b+c=10\n\\end{cases}"
"a=det\\begin{Vmatrix}\n 4 & 2 & 1 \\\\\n 6 & 3 & 1\\\\\n 10&5 &1\n\\end{Vmatrix} \/ \ndet\\begin{Vmatrix}\n 4 & 2 & 1\\\\\n 9 & 3 & 1\\\\\n 25 & 5 & 1\n\\end{Vmatrix}\n=" "=(4(3-5)-2(6-10)+1(6*5-3*10))\/"
"(4(3-5)--2(9-25)+1(9*5-25*3))="
"=(-8+8+0)\/(-8+32-30)=0\/(-6)=0"
"b=det\\begin{Vmatrix}\n 4 & 4 & 1 \\\\\n 9 & 6 & 1\\\\\n 25&10 &1\n\\end{Vmatrix} \/ \ndet\\begin{Vmatrix}\n 4 & 2 & 1\\\\\n 9 & 3 & 1\\\\\n 25 & 5 & 1\n\\end{Vmatrix}\n="
"=(4(6-10)-4(9-25)+(9*10-25*6))\/(-6)="
"=(-16+64-60)\/(-6)=(-12)\/(-6)=2"
"c=det\\begin{Vmatrix}\n 4 & 2 & 4 \\\\\n 9 & 3 & 6\\\\\n 25&5 &10\n\\end{Vmatrix} \/ \ndet\\begin{Vmatrix}\n 4 & 2 & 1\\\\\n 9 & 3 & 1\\\\\n 25 & 5 & 1\n\\end{Vmatrix}\n="
"=(4(3*10-5*6)-2(9*10-6*25)+"
"+4(9*5-3*25))\/(-6)="
"=(4*0+2*60-4*30)\/(-6)=0"
If we want to find polynomial with power 3, we need solve system:
"\\begin{cases}\n8a+4b+2c+d=4\\\\\n27a+9b+3c+d=6\\\\\n125a+25b+5c+d=10\n\\end{cases}"
and this system will have infinitely many solutions.
Comments
Leave a comment