Question #151001
Determine the polynomial function whose graph passes through the points (2, 4), (3,6) and (5,10). Also sketch the graph of the polynomial function. (Using Cramers Method).
1
Expert's answer
2020-12-15T07:03:27-0500

These tree points lie on the straight line y=2xy=2x. The power of polynomial is 1. If we will find polynomial with power 2 as y=ax2+bx+cy=ax^2+bx+c we will

receive a=0,b=2,c=0a=0, b=2, c=0, because parabola can have only two roots,

and y=2xy=2x:

{4a+2b+c=49a+3b+c=625a+5b+c=10\begin{cases} 4a+2b+c=4\\ 9a+3b+c=6\\ 25a+5b+c=10 \end{cases}


a=det4216311051/det4219312551=a=det\begin{Vmatrix} 4 & 2 & 1 \\ 6 & 3 & 1\\ 10&5 &1 \end{Vmatrix} / det\begin{Vmatrix} 4 & 2 & 1\\ 9 & 3 & 1\\ 25 & 5 & 1 \end{Vmatrix} = =(4(35)2(610)+1(65310))/=(4(3-5)-2(6-10)+1(6*5-3*10))/

(4(35)2(925)+1(95253))=(4(3-5)--2(9-25)+1(9*5-25*3))=

=(8+8+0)/(8+3230)=0/(6)=0=(-8+8+0)/(-8+32-30)=0/(-6)=0


b=det44196125101/det4219312551=b=det\begin{Vmatrix} 4 & 4 & 1 \\ 9 & 6 & 1\\ 25&10 &1 \end{Vmatrix} / det\begin{Vmatrix} 4 & 2 & 1\\ 9 & 3 & 1\\ 25 & 5 & 1 \end{Vmatrix} =

=(4(610)4(925)+(910256))/(6)==(4(6-10)-4(9-25)+(9*10-25*6))/(-6)=

=(16+6460)/(6)=(12)/(6)=2=(-16+64-60)/(-6)=(-12)/(-6)=2


c=det42493625510/det4219312551=c=det\begin{Vmatrix} 4 & 2 & 4 \\ 9 & 3 & 6\\ 25&5 &10 \end{Vmatrix} / det\begin{Vmatrix} 4 & 2 & 1\\ 9 & 3 & 1\\ 25 & 5 & 1 \end{Vmatrix} =

=(4(31056)2(910625)+=(4(3*10-5*6)-2(9*10-6*25)+

+4(95325))/(6)=+4(9*5-3*25))/(-6)=

=(40+260430)/(6)=0=(4*0+2*60-4*30)/(-6)=0


If we want to find polynomial with power 3, we need solve system:

{8a+4b+2c+d=427a+9b+3c+d=6125a+25b+5c+d=10\begin{cases} 8a+4b+2c+d=4\\ 27a+9b+3c+d=6\\ 125a+25b+5c+d=10 \end{cases}

and this system will have infinitely many solutions.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS