These tree points lie on the straight line y = 2 x y=2x y = 2 x . The power of polynomial is 1. If we will find polynomial with power 2 as y = a x 2 + b x + c y=ax^2+bx+c y = a x 2 + b x + c we will
receive a = 0 , b = 2 , c = 0 a=0, b=2, c=0 a = 0 , b = 2 , c = 0 , because parabola can have only two roots,
and y = 2 x y=2x y = 2 x :
{ 4 a + 2 b + c = 4 9 a + 3 b + c = 6 25 a + 5 b + c = 10 \begin{cases}
4a+2b+c=4\\
9a+3b+c=6\\
25a+5b+c=10
\end{cases} ⎩ ⎨ ⎧ 4 a + 2 b + c = 4 9 a + 3 b + c = 6 25 a + 5 b + c = 10
a = d e t ∥ 4 2 1 6 3 1 10 5 1 ∥ / d e t ∥ 4 2 1 9 3 1 25 5 1 ∥ = a=det\begin{Vmatrix}
4 & 2 & 1 \\
6 & 3 & 1\\
10&5 &1
\end{Vmatrix} /
det\begin{Vmatrix}
4 & 2 & 1\\
9 & 3 & 1\\
25 & 5 & 1
\end{Vmatrix}
= a = d e t ∥ ∥ 4 6 10 2 3 5 1 1 1 ∥ ∥ / d e t ∥ ∥ 4 9 25 2 3 5 1 1 1 ∥ ∥ = = ( 4 ( 3 − 5 ) − 2 ( 6 − 10 ) + 1 ( 6 ∗ 5 − 3 ∗ 10 ) ) / =(4(3-5)-2(6-10)+1(6*5-3*10))/ = ( 4 ( 3 − 5 ) − 2 ( 6 − 10 ) + 1 ( 6 ∗ 5 − 3 ∗ 10 )) /
( 4 ( 3 − 5 ) − − 2 ( 9 − 25 ) + 1 ( 9 ∗ 5 − 25 ∗ 3 ) ) = (4(3-5)--2(9-25)+1(9*5-25*3))= ( 4 ( 3 − 5 ) − − 2 ( 9 − 25 ) + 1 ( 9 ∗ 5 − 25 ∗ 3 )) =
= ( − 8 + 8 + 0 ) / ( − 8 + 32 − 30 ) = 0 / ( − 6 ) = 0 =(-8+8+0)/(-8+32-30)=0/(-6)=0 = ( − 8 + 8 + 0 ) / ( − 8 + 32 − 30 ) = 0/ ( − 6 ) = 0
b = d e t ∥ 4 4 1 9 6 1 25 10 1 ∥ / d e t ∥ 4 2 1 9 3 1 25 5 1 ∥ = b=det\begin{Vmatrix}
4 & 4 & 1 \\
9 & 6 & 1\\
25&10 &1
\end{Vmatrix} /
det\begin{Vmatrix}
4 & 2 & 1\\
9 & 3 & 1\\
25 & 5 & 1
\end{Vmatrix}
= b = d e t ∥ ∥ 4 9 25 4 6 10 1 1 1 ∥ ∥ / d e t ∥ ∥ 4 9 25 2 3 5 1 1 1 ∥ ∥ =
= ( 4 ( 6 − 10 ) − 4 ( 9 − 25 ) + ( 9 ∗ 10 − 25 ∗ 6 ) ) / ( − 6 ) = =(4(6-10)-4(9-25)+(9*10-25*6))/(-6)= = ( 4 ( 6 − 10 ) − 4 ( 9 − 25 ) + ( 9 ∗ 10 − 25 ∗ 6 )) / ( − 6 ) =
= ( − 16 + 64 − 60 ) / ( − 6 ) = ( − 12 ) / ( − 6 ) = 2 =(-16+64-60)/(-6)=(-12)/(-6)=2 = ( − 16 + 64 − 60 ) / ( − 6 ) = ( − 12 ) / ( − 6 ) = 2
c = d e t ∥ 4 2 4 9 3 6 25 5 10 ∥ / d e t ∥ 4 2 1 9 3 1 25 5 1 ∥ = c=det\begin{Vmatrix}
4 & 2 & 4 \\
9 & 3 & 6\\
25&5 &10
\end{Vmatrix} /
det\begin{Vmatrix}
4 & 2 & 1\\
9 & 3 & 1\\
25 & 5 & 1
\end{Vmatrix}
= c = d e t ∥ ∥ 4 9 25 2 3 5 4 6 10 ∥ ∥ / d e t ∥ ∥ 4 9 25 2 3 5 1 1 1 ∥ ∥ =
= ( 4 ( 3 ∗ 10 − 5 ∗ 6 ) − 2 ( 9 ∗ 10 − 6 ∗ 25 ) + =(4(3*10-5*6)-2(9*10-6*25)+ = ( 4 ( 3 ∗ 10 − 5 ∗ 6 ) − 2 ( 9 ∗ 10 − 6 ∗ 25 ) +
+ 4 ( 9 ∗ 5 − 3 ∗ 25 ) ) / ( − 6 ) = +4(9*5-3*25))/(-6)= + 4 ( 9 ∗ 5 − 3 ∗ 25 )) / ( − 6 ) =
= ( 4 ∗ 0 + 2 ∗ 60 − 4 ∗ 30 ) / ( − 6 ) = 0 =(4*0+2*60-4*30)/(-6)=0 = ( 4 ∗ 0 + 2 ∗ 60 − 4 ∗ 30 ) / ( − 6 ) = 0
If we want to find polynomial with power 3, we need solve system:
{ 8 a + 4 b + 2 c + d = 4 27 a + 9 b + 3 c + d = 6 125 a + 25 b + 5 c + d = 10 \begin{cases}
8a+4b+2c+d=4\\
27a+9b+3c+d=6\\
125a+25b+5c+d=10
\end{cases} ⎩ ⎨ ⎧ 8 a + 4 b + 2 c + d = 4 27 a + 9 b + 3 c + d = 6 125 a + 25 b + 5 c + d = 10
and this system will have infinitely many solutions.
Comments