linear combimation has the form:
"v \u20d7=\u03b1*(e1) \u20d7+\u03b2*(e2) \u20d7+\u03b3*(e3) \u20d7"
"(1; -2; 5)=\u03b1*(1;1;1)+\u03b2*(1;2;3)+\u03b3*(2; -1;1)"
"(1; -2; 5)=(\u03b1;\u03b1;\u03b1;)+(\u03b2;2\u03b2;3\u03b2)+(2\u03b3;-\u03b3;\u03b3)"
find "\\alpha, \\beta, \\gamma:"
system of equations:
solution system:
equation (1) minus equation (2):
"-\\beta+3\\gamma=3;"
"\\beta=3\\gamma-3;" (4)
equation (2) plus equation (3):
"2\\alpha+5\\beta=3;"
"\u03b1=(3-5\u03b2)\/2;"
"\\alpha=(3-5(3\\gamma-3))\/2;" (5)
equation (1):
"(3\u22125(3\u03b3\u22123))\/2+3\\gamma-3+2\\gamma=1;"
"3-15\\gamma+15+10\\gamma-6=2;"
"-5\\gamma=-10;"
"\\gamma=2;"
equation (4):
"\\beta=3*2-3;"
"\\beta=3;"
equation (1):
"\\alpha=1-2\\gamma-\\beta;"
"\\alpha=1-2*2-3;"
"\\alpha=-6;"
"v \u20d7=-6*(e1) \u20d7+3*(e2) \u20d7+2*(e3);"
"(1; -2; 5)=-6*(1;1;1)+3*(1;2;3)+2*(2; -1;1);"
Comments
Leave a comment