"\\vec a _1 =(1,1,1), \\vec a_2=(0,1,1), \\vec a_3=(0,1,-1)"
We show that the vectors form the basis.
Consider a linear combination of vectors
"\\alpha \\vec a_1+\\beta\\vec a_2+\\gamma\\vec a_3=\\vec 0"
and show that the numbers "\\alpha,\\beta,\\gamma" are equal 0.
"\\alpha \\vec a_1+\\beta\\vec a_2+\\gamma\\vec a_3=\\vec 0\\\\\n\\alpha (1,1,1)+\\beta(0,1,1)+\\gamma(0,1,-1)=(0,0,0)\\\\\n\\begin{matrix}\n\n \\alpha=0\\\\\n \\alpha+\\beta+\\gamma=0\\\\\n\\alpha+\\beta-\\gamma=0\n \\\\\\end{matrix}\\\\\n \\alpha=\\beta=\\gamma=0"
Then vectors "\\vec a _1 =(1,1,1), \\vec a_2=(0,1,1), \\vec a_3=(0,1,-1)" form the basis in "R^3"
Comments
Leave a comment