Let T : R3 -> R3 be the linear operator defined by T(x1, x2, x3) = (x1, x3, -2x2- x3).
Let f(x) = - x³+ 2.
Find the operator f(T)
Given "T\\begin{bmatrix} x_1 \\\\ x_2 \\\\ x_3 \\end{bmatrix} = \\begin{bmatrix} x_1 \\\\ x_3 \\\\ -2x_2-x_3 \\end{bmatrix}"
In matirx form we have "T\\begin{bmatrix} x_1 \\\\ x_2 \\\\ x_3 \\end{bmatrix} =\\begin{bmatrix} 1 &0 &0 \\\\ 0 & 0& 1 \\\\ 0 & -2 & -1 \\end{bmatrix}\\begin{bmatrix} x_1 \\\\ x_2 \\\\ x_3 \\end{bmatrix} = AX"
Where "A=\\begin{bmatrix} 1 &0 &0 \\\\ 0 & 0& 1 \\\\ 0 & -2 & -1 \\end{bmatrix}" ; "X = \\begin{bmatrix} x_1 \\\\ x_2 \\\\ x_3 \\end{bmatrix}"
and "f(x) = -x^3+2"
then "f(T)= f(A)=-A^3+2I"
"A^3=\\begin{bmatrix} 1 &0 &0 \\\\ 0 & 2& -1 \\\\ 0 & 2 & 3 \\end{bmatrix}" , "2I =2\\begin{bmatrix} 1 &0 &0 \\\\ 0 & 1& 0 \\\\ 0 & 0 & 1 \\end{bmatrix} = \\begin{bmatrix} 2 &0 &0 \\\\ 0 & 2 & 0 \\\\ 0 & 0 & 2 \\end{bmatrix}"
"f(A)=\\begin{bmatrix} -1 &0 &0 \\\\ 0 & -2 & 1 \\\\ 0 & -2 & -3 \\end{bmatrix} + \\begin{bmatrix} 2 &0 &0 \\\\ 0 & 2 & 0 \\\\ 0 & 0 & 2 \\end{bmatrix} = \\begin{bmatrix} 1 &0 &0 \\\\ 0 & 0& 1 \\\\ 0 & -2 & -1 \\end{bmatrix} =A"
Therefore "f(T)=T"
Comments
Leave a comment