Suppose al = (1, 0, 1), a2 = (0, 1, -2) and a3 = (-1, -1, 0) are vectors in R3 and f : R3 -> R is a linear functional such that f(al) = 1, f(a2) = -1 and f(a3) = 3.
If a = (p,q,r) belongs to R3, find f(a).
Since "\\left|\\begin{array}{ccc} 1 & 0 & 1\\\\ 0 & 1 & -2\\\\-1 & -1 & 0 \\end {array}\\right|=0+0+0-(-1)-0-(-1)(-2)=-1\\ne 0" , the vectors "a_1,a_2,a_3" are linearly independent in "\\mathbb R^3" , and thus form a basis of "\\mathbb R^3" . Therefore, each vector "a = (p,q,r)\\in\\mathbb R^3" can be represent as a linear combination of "a_1,a_2,a_3", that is "a=ta_1+sa_2+ma_3" for some "t,s,m\\in\\mathbb R." Therefore, we have
"(p,q,r)=t(1,0,1)+s(0,1,-2)+m(-1,-1,0)=(t-m,s-m,t-2s)". Then for each "(p,q,r)" let us solve the following system:
"\\begin{cases} p = t-m\\\\ q= s-m \\\\ r =t-2s \\end{cases}"
which is equivalent to
"\\begin{cases} p = t-m\\\\ q-p= s-t \\\\ r =t-2s \\end{cases}"
"\\begin{cases} p = t-m\\\\ q-p= s-t \\\\ r+q-p =-s \\end{cases}"
"\\begin{cases} p = t-m\\\\ r+2q-2p= -t \\\\ r+q-p =-s \\end{cases}"
"\\begin{cases} m = t-p\\\\ t= 2p-2q-r \\\\ s=p-q-r \\end{cases}"
"\\begin{cases} m = p-2q-r\\\\ t= 2p-2q-r \\\\ s=p-q-r \\end{cases}"
Taking into account that "f:\\mathbb R^3\\to \\mathbb R" is a linear function, we conclude that
"f(a)=f(ta_1+sa_2+ma_3)=tf(a_1)+sf(a_2)+mf(a_3)=(2p-2q-r)\\cdot 1+(p-q-r)(-1)+(p-2q-r)\\cdot 3=4p-7q-3r."
Answer: "f(a)=f(p,q,r)=4p-7q-3r."
Comments
Leave a comment