Question #143059
Show whether the first three vectors are linearly independent

V1= 1, 1, -2, -2

V2= 2, -3, 0, 2

V3= -2, 0, 2, 2

V4= 3, -3 -2, 2
1
Expert's answer
2020-11-12T17:40:44-0500

{x1+2x22x3=0,(1)x13x2=0,(2)2x1+2x3=0,(3)2x1+2x2+2x3=0.(4)\begin{cases} x_1+2x_2-2x_3=0, (1)\\ x_1-3x_2=0, (2)\\ -2x_1+2x_3=0, (3)\\ -2x_1+2x_2+2x_3=0. (4) \end{cases}

From (2): x2=x1/3x_2=x_1/3, from (3): x3=x1,x_3=x_1, to (1):

x1+2x1/3x1=0,x_1+2x_1/3-x_1=0,

x1=0,x_1=0,

(2): x2=0,x_2=0,

(3): x3=0.x_3=0.

Only x1=x2=x3=0x_1=x_2=x_3=0 is the solution.

So, by the defenition, vectors are linearly independent.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS