Find the projection of the vector v onto the subspace S.
S = span (0,1,1), (1,1,0), v = (3,4,2)
proj_s v = ______
Given that ,
"S=Span \\{ (0,1,1),(1,1,0)\\}" and "v=(3,4,2)"
let "u_1=(0,1,1) \\ and \\ u_2=(1,1,0)"
Then "S=Span\\{u_1,u_2\\}" .
Since "u_1" and "u_2" are not orthogonal ,first apply the Gram-Schmidt algorithm to find an orthogonal basis for "S" .
Set "w_1=u_1=(0,1,1)"
Then find "w_2=u_2-\\frac{<u_2,w_1>}{<w_1,w_1>}w_1" "=(1,1,0)-\\frac{1}{2}(0,1,1)"
"=(1,\\frac{1}{2},-\\frac{1}{2})"
Where "w_1\\ and \\ w_2" are orthogonal basis of "U" .
Now we have to calculate the Fourier coefficient of "v" with respect to "u_i" i,e,
"c_1=\\frac{<v,w_1>}{<w_1,w_1>}=\\frac{6}{2}=3"
"c_2=\\frac{<v,w_2>}{<w_2,w_2>}=\\frac{3+2-1}{1+\\frac{1}{4}+\\frac{1}{4}}=\\frac{4}{(\\frac{3}{2})}" "=\\frac{8}{3}"
Then projection "Proj(v,U)" "=c_1w_1+c_2w_2"
"=3(0,1,1)+\\frac{8}{3}(1,\\frac{1}{2},-\\frac{1}{2})"
"=(0,3,3)+(\\frac{8}{3},\\frac{4}{3},-\\frac{4}{3})"
"=(\\frac{8}{3},\\frac{13}{3},\\frac{5}{3})"
Comments
Leave a comment