Question #140286

Find the projection of the vector v onto the subspace S.

S = span (0,1,1), (1,1,0),    v = (3,4,2)


proj_s v = ______


1
Expert's answer
2020-10-27T17:56:24-0400

Given that ,

S=Span{(0,1,1),(1,1,0)}S=Span \{ (0,1,1),(1,1,0)\} and v=(3,4,2)v=(3,4,2)

let u1=(0,1,1) and u2=(1,1,0)u_1=(0,1,1) \ and \ u_2=(1,1,0)

Then S=Span{u1,u2}S=Span\{u_1,u_2\} .

Since u1u_1 and u2u_2 are not orthogonal ,first apply the Gram-Schmidt algorithm to find an orthogonal basis for SS .

Set w1=u1=(0,1,1)w_1=u_1=(0,1,1)

Then find w2=u2<u2,w1><w1,w1>w1w_2=u_2-\frac{<u_2,w_1>}{<w_1,w_1>}w_1 =(1,1,0)12(0,1,1)=(1,1,0)-\frac{1}{2}(0,1,1)

=(1,12,12)=(1,\frac{1}{2},-\frac{1}{2})

Where w1 and w2w_1\ and \ w_2 are orthogonal basis of UU .

Now we have to calculate the Fourier coefficient of vv with respect to uiu_i i,e,


c1=<v,w1><w1,w1>=62=3c_1=\frac{<v,w_1>}{<w_1,w_1>}=\frac{6}{2}=3


c2=<v,w2><w2,w2>=3+211+14+14=4(32)c_2=\frac{<v,w_2>}{<w_2,w_2>}=\frac{3+2-1}{1+\frac{1}{4}+\frac{1}{4}}=\frac{4}{(\frac{3}{2})} =83=\frac{8}{3}


Then projection Proj(v,U)Proj(v,U) =c1w1+c2w2=c_1w_1+c_2w_2

=3(0,1,1)+83(1,12,12)=3(0,1,1)+\frac{8}{3}(1,\frac{1}{2},-\frac{1}{2})

=(0,3,3)+(83,43,43)=(0,3,3)+(\frac{8}{3},\frac{4}{3},-\frac{4}{3})

=(83,133,53)=(\frac{8}{3},\frac{13}{3},\frac{5}{3})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS