Question #140944
in the following a set V, a field F, which is either R or C, and operations of addition + and scalar multiplication . , are given for alpha element of F and x element of V, we write their multiplication alpha × x as alpha • x, cheak whether V is a vector space over F, with these operations .
1
Expert's answer
2020-10-28T19:33:21-0400

As I understand it, we want to check 10 axioms of a vector space.

1) AC Additive Closure


ifu,vV,then(u+v)V\text{if}\quad \vec{u},\vec{v}\in V, \quad\text{then}\quad \left(\vec{u}+\vec{v}\right)\in V

2) SC Scalar Closure


ifαCanduV,then(αu)V\text{if}\quad\alpha\in\mathbb{C}\quad\text{and}\quad \vec{u}\in V,\quad\text{then}\quad(\alpha\cdot\vec{u})\in V

3) C Commutativity


ifu,vV,thenu+v=v+u\text{if}\quad \vec{u},\vec{v}\in V, \quad\text{then}\quad \vec{u}+\vec{v}=\vec{v}+\vec{u}

4) AA Additive Associativity


ifu,v,wV,then(u+v)+w=v+(u+w)\text{if}\quad \vec{u},\vec{v},\vec{w}\in V, \quad\text{then}\quad \left(\vec{u}+\vec{v}\right)+\vec{w}=\vec{v}+\left(\vec{u}+\vec{w}\right)

5) Z Zero Vector


There is a vector,0,called the zero vector, such thatu+0=ufor alluV\text{There is a vector},\,\,\, \vec{0},\,\,\,\text{called the zero vector, such that}\\[0.3cm]\,\,\,\vec{u}+\vec{0}=\vec{u}\,\,\,\text{for all}\,\,\,\vec{u}\in V

6) AI Additive Inverses


IfuV,then there exists a vector(u)Vso thatu+(u)=0.\text{If}\,\,\,\vec{u}\in V,\,\,\,\text{then there exists a vector}\,\,\,(−\vec{u})\in V\,\,\,\text{so that}\\[0.3cm] \vec{u}+(−\vec{u})=\vec{0}.

7) SMA Scalar Multiplication Associativity


Ifα,βCanduV,thenα(βu)=(αβ)u\text{If} \,\,\,\alpha, \beta\in\mathbb{C}\,\,\,\text{and}\,\,\,\vec{u}\in V, \,\,\,\text{then}\\[0.3cm] \alpha\cdot(\beta\cdot\vec{u})=(\alpha\beta)\cdot\vec{u}

8) DVA Distributivity across Vector Addition


IfαCandu,vV,thenα(u+v)=αu+αv\text{If}\,\,\,\alpha\in\mathbb{C}\,\,\,\text{and}\,\,\,\vec{u},\vec{v}\in V,\,\,\,\text{then}\\[0.3cm] \alpha\cdot(\vec{u}+\vec{v})=\alpha\cdot\vec{u}+\alpha\cdot\vec{v}

9) DSA Distributivity across Scalar Addition


Ifα,βCanduV,then(α+β)u=αu+βu\text{If}\,\,\,\alpha,\beta\in\mathbb{C}\,\,\,\text{and}\,\,\,\vec{u}\in V,\text{then}\\[0.3cm] (\alpha+\beta)\cdot\vec{u}=\alpha\cdot\vec{u}+\beta\cdot\vec{u}

10) O One


IfuV,then1u=u.\text{If}\,\,\,\vec{u}\in V,\,\,\,\text{then}\,\,\, 1\cdot\vec{u}=\vec{u}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS