As I understand it, we want to check 10 axioms of a vector space.
1) AC Additive Closure
"\\text{if}\\quad \\vec{u},\\vec{v}\\in V, \\quad\\text{then}\\quad \\left(\\vec{u}+\\vec{v}\\right)\\in V" 2) SC Scalar Closure
"\\text{if}\\quad\\alpha\\in\\mathbb{C}\\quad\\text{and}\\quad \\vec{u}\\in V,\\quad\\text{then}\\quad(\\alpha\\cdot\\vec{u})\\in V" 3) C Commutativity
"\\text{if}\\quad \\vec{u},\\vec{v}\\in V, \\quad\\text{then}\\quad \\vec{u}+\\vec{v}=\\vec{v}+\\vec{u}" 4) AA Additive Associativity
"\\text{if}\\quad \\vec{u},\\vec{v},\\vec{w}\\in V, \\quad\\text{then}\\quad \\left(\\vec{u}+\\vec{v}\\right)+\\vec{w}=\\vec{v}+\\left(\\vec{u}+\\vec{w}\\right)" 5) Z Zero Vector
"\\text{There is a vector},\\,\\,\\, \\vec{0},\\,\\,\\,\\text{called the zero vector, such that}\\\\[0.3cm]\\,\\,\\,\\vec{u}+\\vec{0}=\\vec{u}\\,\\,\\,\\text{for all}\\,\\,\\,\\vec{u}\\in V" 6) AI Additive Inverses
"\\text{If}\\,\\,\\,\\vec{u}\\in V,\\,\\,\\,\\text{then there exists a vector}\\,\\,\\,(\u2212\\vec{u})\\in V\\,\\,\\,\\text{so that}\\\\[0.3cm]\n\\vec{u}+(\u2212\\vec{u})=\\vec{0}." 7) SMA Scalar Multiplication Associativity
"\\text{If} \\,\\,\\,\\alpha, \\beta\\in\\mathbb{C}\\,\\,\\,\\text{and}\\,\\,\\,\\vec{u}\\in V, \\,\\,\\,\\text{then}\\\\[0.3cm] \n\\alpha\\cdot(\\beta\\cdot\\vec{u})=(\\alpha\\beta)\\cdot\\vec{u}" 8) DVA Distributivity across Vector Addition
"\\text{If}\\,\\,\\,\\alpha\\in\\mathbb{C}\\,\\,\\,\\text{and}\\,\\,\\,\\vec{u},\\vec{v}\\in V,\\,\\,\\,\\text{then}\\\\[0.3cm] \n\\alpha\\cdot(\\vec{u}+\\vec{v})=\\alpha\\cdot\\vec{u}+\\alpha\\cdot\\vec{v}" 9) DSA Distributivity across Scalar Addition
"\\text{If}\\,\\,\\,\\alpha,\\beta\\in\\mathbb{C}\\,\\,\\,\\text{and}\\,\\,\\,\\vec{u}\\in V,\\text{then}\\\\[0.3cm] \n(\\alpha+\\beta)\\cdot\\vec{u}=\\alpha\\cdot\\vec{u}+\\beta\\cdot\\vec{u}" 10) O One
"\\text{If}\\,\\,\\,\\vec{u}\\in V,\\,\\,\\,\\text{then}\\,\\,\\, 1\\cdot\\vec{u}=\\vec{u}."
Comments
Leave a comment