Answer to Question #143185 in Linear Algebra for Sourav Mondal

Question #143185

Let V be the subspace of R3 spanned by

{(1, 1, 0), (1, 1, 1)} and T : V —> V be defined by T(x1, x2, x3) = (0, x1, x2).

Find the kernel of T.


1
Expert's answer
2020-11-16T07:47:10-0500

Consider the spanning set of VV . It means that any vectors in VV can be written as a linear combination of {(1,1,0),(1,1,1)}.\{(1,1,0),(1,1,1)\}. That is, for any (x1,x2,x3)V,(x_1,x_2,x_3) \in V,

(x1,x2,x3)=λ1(1,1,0)+λ2(1,1,1),λ1,λ2R(x1,x2,x3)=(λ1+λ2,λ1+λ2,λ2)(x_1,x_2,x_3)=\lambda_1(1,1,0)+\lambda_2(1,1,1), \lambda_1,\lambda_2 \in \R\\ (x_1,x_2,x_3)=(\lambda_1+\lambda_2,\lambda_1+\lambda_2,\lambda_2)


The Kernel of T is defined as the set;

Ker(T)={T(x1,x2,x3)=(0,0,0)(x1,x2,x3)V}.Ker(T)=\{T(x_1,x_2,x_3)=(0,0,0)|(x_1,x_2,x_3)\in V\}.


To get Ker(T)Ker(T) ;


T(x1,x2,x3)=(0,0,0)(0,x1,x2)=(0,0,0)    x1=0,x2=0T(x_1,x_2,x_3)=(0,0,0)\\(0,x_1,x_2)=(0,0,0)\\ \implies x_1=0, x_2=0 whereby, x3x_3 remains unchanged. That is, x3Rx_3\in \R .

    λ1=λ2\implies \lambda_1=-\lambda_2 , x3=λ2x_3=\lambda_2


Therefore, the Ker(T):={(0,0,x3)x3R}Ker(T):=\{(0,0,x_3)|x_3\in \R\} and its basis is (0,0,1)(0,0,1) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment