Find the radius and the centre of the circular section of the sphere I r I = 4 cut off by the plane r . (2i -j + 4k) = 3.
1
Expert's answer
2020-11-11T17:53:13-0500
Let S be the sphere inR3with centerO(x0,y0,z0)and radiusr,and letPbe the plane with equationLx+My+Nz=Q,so thatn=(L,M,N)is an orthogonalvector ofP.IfP0is an arbitrary point onP,thedistance from the center of the sphereOto the planePisρ=∣∣n∣∣(O−P0)n=L2+M2+N2Lx0+My0+Nz0−QThe intersection of the plane and the sphereis a circle, if and only if∣ρ∣<r,and inthat case, the circle has radiusrc=r2−ρ2and centerc=O+∣∣n∣∣ρ⋅n=(x0,y0,z0)+L2+M2+N2ρ(Li+Mj+Nk)From the given information, we can deduce that,O(x0,y0,z0)=O(0,0,0),∣r∣=4;2x−y+4z=3S={(x,y,z):x2+y2+z2=16},P={(x,y,z):2x−4y+4z=3ρ=L2+M2+N2Lx0+My0+Nz0−Q=22+(−1)2+422(0)−1(0)+4(0)−3=21−3rc=r2−ρ2=42−(21−3)2=7109c=O+∣∣n∣∣ρ⋅n=(0,0,0)+(21−3)⋅22+(−1)2+42(2,−1,4)=(7−2,71,7−4)∴The radius is7109and the centre is(7−2,71,7−4)
Comments