Question #143176

Find the radius and the centre of the circular section of the sphere I r I = 4 cut off by the plane r . (2i -j + 4k) = 3.


1
Expert's answer
2020-11-11T17:53:13-0500

Let S be the sphere inR3with centerO(x0,y0,z0)and radiusr,and letPbe the plane with equationLx+My+Nz=Q,so thatn=(L,M,N)is an orthogonalvector ofP.IfP0is an arbitrary point onP,thedistance from the center of the sphereOto the planePisρ=(OP0)nn=Lx0+My0+Nz0QL2+M2+N2The intersection of the plane and the sphereis a circle, if and only ifρ<r,and inthat case, the circle has radiusrc=r2ρ2and centerc=O+ρnn=(x0,y0,z0)+ρ(Li+Mj+Nk)L2+M2+N2From the given information, we can deduce that,O(x0,y0,z0)=O(0,0,0),r=4;2xy+4z=3S={(x,y,z):x2+y2+z2=16},P={(x,y,z):2x4y+4z=3ρ=Lx0+My0+Nz0QL2+M2+N2=2(0)1(0)+4(0)322+(1)2+42=321rc=r2ρ2=42(321)2=1097c=O+ρnn=(0,0,0)+(321)(2,1,4)22+(1)2+42=(27,17,47)The radius is1097and the centre is(27,17,47)\displaystyle\textsf{Let S be the sphere in}\, R^3\, \textsf{with center}\\ O(x_0, y_0, z_0)\, \textsf{and radius}\, r, \, \textsf{and let}\\ P\, \textsf{be the plane with equation}\, Lx + My + Nz = Q,\\ \textsf{so that}\, \overrightarrow{n} = (L, M, N)\, \textsf{is an orthogonal}\\ \textsf{vector of}\, P.\\ \textsf{If}\, P_0\, \textsf{is an arbitrary point on}\,P, \, \textsf{the}\\ \textsf{distance from the center of the sphere}\, O \\ \textsf{to the plane}\, P\, \textsf{is}\\ \rho = \frac{(O - P_0)\overrightarrow{n}}{||\overrightarrow{n}||} = \frac{Lx_0 + My_0 + Nz_0 - Q}{\sqrt{L^2 + M^2 + N^2}}\\ \textsf{The intersection of the plane and the sphere}\\ \textsf{is a circle, if and only if}\, |\rho| < r,\, \textsf{and in}\\ \textsf{that case, the circle has radius}\,r_c = \sqrt{r^2 - \rho^2}\\ \textsf{and center}\\ c = O + \frac{\rho\cdot\overrightarrow{n}}{||\overrightarrow{n}||} = (x_0, y_0, z_0) + \frac{\rho(L\textbf{i} + M\textbf{j} + N\textbf{k})}{\sqrt{L^2 + M^2 + N^2}}\\ \textsf{From the given information, we can deduce that,}\\ O(x_0, y_0, z_0) = O(0, 0, 0), |r| = 4; 2x - y + 4z = 3\\ S = \{(x, y, z): x^2 + y^2 + z^2 = 16\}, \,P = \{(x, y, z): 2x - 4y + 4z = 3\\ \rho = \frac{Lx_0 + My_0 + Nz_0 - Q}{\sqrt{L^2 + M^2 + N^2}} = \frac{2(0) - 1(0) + 4(0) - 3}{\sqrt{2^2 + (-1)^2 + 4^2}} = \frac{-3}{\sqrt{21}}\\ r_c = \sqrt{r^2 - \rho^2} = \sqrt{4^2 - \left(\frac{-3}{\sqrt{21}}\right)^2} = \sqrt{\frac{109}{7}}\\ c = O + \frac{\rho\cdot\overrightarrow{n}}{||\overrightarrow{n}||} = (0, 0, 0) + \left(\frac{-3}{\sqrt{21}}\right)\cdot\frac{(2, -1, 4)}{\sqrt{2^2 + (-1)^2 + 4^2}} = \left(\frac{-2}{7}, \frac{1}{7}, \frac{-4}{7}\right)\\ \therefore \textsf{The radius is}\,\sqrt{\frac{109}{7}}\, \textsf{and the centre is}\, \left(\frac{-2}{7}, \frac{1}{7}, \frac{-4}{7}\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS