Here matrix representation of T with respect to standard basis { ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) } \{ (1,0,0), (0,1,0), (0,0,1)\} {( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 )} over the field C C C is A = A= A =
( 1 i 0 i − 2 0 0 − i 1 ) \begin{pmatrix}
1& i& 0 \\
i & -2&0\\
0&-i&1
\end{pmatrix} ⎝ ⎛ 1 i 0 i − 2 − i 0 0 1 ⎠ ⎞
Now , T ∗ = T^*= T ∗ = Transpose conjugate of matrix representation of T T T
= A H =A^H = A H
= = = ( 1 − i 0 − i − 2 0 0 i 1 ) \begin{pmatrix}
1&-i&0 \\
-i&-2&0\\
0&i&1
\end{pmatrix} ⎝ ⎛ 1 − i 0 − i − 2 i 0 0 1 ⎠ ⎞
Since ,A ≠ A H A\neq A^H A = A H
Hence, T T T is not a self adjoint operator.
To check unitary operators ,
Consider A . A H = A.A^H= A . A H = ( 2 − 3 i − 1 3 i 5 − 2 i − 1 2 i 2 ) \begin{pmatrix}
2&-3i&-1\\
3i&5&-2i\\
-1&2i&2
\end{pmatrix} ⎝ ⎛ 2 3 i − 1 − 3 i 5 2 i − 1 − 2 i 2 ⎠ ⎞ ≠ I \neq I = I
Where I I I stands for identity matrix.
Therefore,T T T is not a unitary operator.
Comments