First we prove that T is a linear operator:
T ( ( x 1 x 2 x 3 ) + ( y 1 y 2 y 3 ) ) = T ( x 1 + y 1 x 2 + y 2 x 3 + y 3 ) = ( x 1 + y 1 + x 2 + y 2 x 2 + y 2 + x 3 + y 3 x 1 + y 1 − x 3 − y 3 2 x 1 + 2 y 1 + x 2 + y 2 − x 3 − y 3 ) = = ( x 1 + x 2 x 2 + x 3 x 1 − x 3 2 x 1 + x 2 − x 3 ) + ( y 1 + y 2 y 2 + y 3 y 1 − y 3 2 y 1 + y 2 − y 3 ) = T ( x 1 x 2 x 3 ) + T ( y 1 y 2 y 3 ) T ( α ( x 1 x 2 x 3 ) ) = T ( ( α x 1 α x 2 α x 3 ) ) = ( α x 1 + α x 2 α x 2 + α x 3 α x 1 − α x 3 2 α x 1 + α x 2 − α x 3 ) = ( α ( x 1 + x 2 ) α ( x 2 + x 3 ) α ( x 1 − x 3 ) α ( 2 x 1 + x 2 − x 3 ) ) = = α ( x 1 + x 2 x 2 + x 3 x 1 − x 3 2 x 1 + x 2 − x 3 ) = α T ( x 1 x 2 x 3 ) T(\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}+
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix}) =
T\begin{pmatrix}
x_1 + y_1 \\
x_2 + y_2 \\
x_3 + y_3
\end{pmatrix} =
\begin{pmatrix}
x_1 + y_1 + x_2 + y_2\\
x_2 + y_2 + x_3 + y_3\\
x_1 + y_1 - x_3 - y_3 \\
2x_1 + 2y_1 + x_2 + y_2 - x_3 - y_3
\end{pmatrix} =
\\
= \begin{pmatrix}
x_1 + x_2 \\
x_2 + x_3 \\
x_1 - x_3 \\
2x_1 + x_2 - x_3
\end{pmatrix} +
\begin{pmatrix}
y_1 + y_2\\
y_2 + y_3\\
y_1 - y_3 \\
2y_1 + y_2 - y_3
\end{pmatrix} =
T\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}+
T\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix}
\\
T(\alpha\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}) =
T(\begin{pmatrix}
\alpha x_1 \\
\alpha x_2 \\
\alpha x_3
\end{pmatrix}) =
\begin{pmatrix}
\alpha x_1 + \alpha x_2 \\
\alpha x_2 + \alpha x_3 \\
\alpha x_1 - \alpha x_3 \\
2\alpha x_1 + \alpha x_2 - \alpha x_3
\end{pmatrix} =
\begin{pmatrix}
\alpha(x_1 + x_2) \\
\alpha(x_2 + x_3) \\
\alpha(x_1 - x_3) \\
\alpha(2x_1 + x_2 - x_3)
\end{pmatrix} =
\\
= \alpha\begin{pmatrix}
x_1 + x_2 \\
x_2 + x_3 \\
x_1 - x_3 \\
2x_1 + x_2 - x_3
\end{pmatrix} =
\alpha T\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
\\ T ( ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ + ⎝ ⎛ y 1 y 2 y 3 ⎠ ⎞ ) = T ⎝ ⎛ x 1 + y 1 x 2 + y 2 x 3 + y 3 ⎠ ⎞ = ⎝ ⎛ x 1 + y 1 + x 2 + y 2 x 2 + y 2 + x 3 + y 3 x 1 + y 1 − x 3 − y 3 2 x 1 + 2 y 1 + x 2 + y 2 − x 3 − y 3 ⎠ ⎞ = = ⎝ ⎛ x 1 + x 2 x 2 + x 3 x 1 − x 3 2 x 1 + x 2 − x 3 ⎠ ⎞ + ⎝ ⎛ y 1 + y 2 y 2 + y 3 y 1 − y 3 2 y 1 + y 2 − y 3 ⎠ ⎞ = T ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ + T ⎝ ⎛ y 1 y 2 y 3 ⎠ ⎞ T ( α ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ ) = T ( ⎝ ⎛ α x 1 α x 2 α x 3 ⎠ ⎞ ) = ⎝ ⎛ α x 1 + α x 2 α x 2 + α x 3 α x 1 − α x 3 2 α x 1 + α x 2 − α x 3 ⎠ ⎞ = ⎝ ⎛ α ( x 1 + x 2 ) α ( x 2 + x 3 ) α ( x 1 − x 3 ) α ( 2 x 1 + x 2 − x 3 ) ⎠ ⎞ = = α ⎝ ⎛ x 1 + x 2 x 2 + x 3 x 1 − x 3 2 x 1 + x 2 − x 3 ⎠ ⎞ = α T ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞
Then we find the kernel:
( x 1 + x 2 x 2 + x 3 x 1 − x 3 2 x 1 + x 2 − x 3 ) = ( 0 0 0 0 ) ( x 1 + x 2 x 2 + x 3 x 1 − x 3 2 x 1 + x 2 − x 3 ) = ( 1 1 0 0 1 1 1 0 − 1 2 1 − 1 ) ( x 1 x 2 x 3 ) ( 1 1 0 0 1 1 1 0 − 1 2 1 − 1 ) = ( 1 1 0 1 1 0 1 0 − 1 1 1 0 ) = ( 1 1 0 1 0 − 1 0 0 0 0 0 0 ) = ( 1 1 0 0 1 1 0 0 0 0 0 0 ) x 2 = − x 3 x 1 = − x 2 = x 3 \begin{pmatrix}
x_1 + x_2 \\
x_2 + x_3 \\
x_1 - x_3 \\
2x_1 + x_2 - x_3
\end{pmatrix} =
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}
\\
\begin{pmatrix}
x_1 + x_2 \\
x_2 + x_3 \\
x_1 - x_3 \\
2x_1 + x_2 - x_3
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & -1 \\
2 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
\\
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & -1 \\
2 & 1 & -1
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & -1 \\
1 & 1 & 0
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\\
x_2 = -x_3 \\
x_1 = -x_2 = x_3 ⎝ ⎛ x 1 + x 2 x 2 + x 3 x 1 − x 3 2 x 1 + x 2 − x 3 ⎠ ⎞ = ⎝ ⎛ 0 0 0 0 ⎠ ⎞ ⎝ ⎛ x 1 + x 2 x 2 + x 3 x 1 − x 3 2 x 1 + x 2 − x 3 ⎠ ⎞ = ⎝ ⎛ 1 0 1 2 1 1 0 1 0 1 − 1 − 1 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ ⎝ ⎛ 1 0 1 2 1 1 0 1 0 1 − 1 − 1 ⎠ ⎞ = ⎝ ⎛ 1 1 1 1 1 1 0 1 0 0 − 1 0 ⎠ ⎞ = ⎝ ⎛ 1 1 0 0 1 0 0 0 0 − 1 0 0 ⎠ ⎞ = ⎝ ⎛ 1 0 0 0 1 1 0 0 0 1 0 0 ⎠ ⎞ x 2 = − x 3 x 1 = − x 2 = x 3
So the kernel is all vectors given as( x 3 − x 3 x 3 ) \begin{pmatrix}
x_3\\
-x_3 \\
x_3
\end{pmatrix} ⎝ ⎛ x 3 − x 3 x 3 ⎠ ⎞ . Its dimension is 1, its basis is ( 1 − 1 1 ) \begin{pmatrix}
1 \\
-1 \\
1
\end{pmatrix} ⎝ ⎛ 1 − 1 1 ⎠ ⎞ .
Finally we find the range of T:
( x 1 + x 2 x 2 + x 3 x 1 − x 3 2 x 1 + x 2 − x 3 ) = ( x 1 0 x 1 2 x 1 ) + ( x 2 x 2 0 x 2 ) + ( 0 x 3 − x 3 − x 3 ) \begin{pmatrix}
x_1 + x_2 \\
x_2 + x_3 \\
x_1 - x_3 \\
2x_1 + x_2 - x_3
\end{pmatrix} =
\begin{pmatrix}
x_1 \\
0 \\
x_1 \\
2x_1
\end{pmatrix} +
\begin{pmatrix}
x_2 \\
x_2 \\
0 \\
x_2
\end{pmatrix} +
\begin{pmatrix}
0 \\
x_3 \\
-x_3 \\
-x_3
\end{pmatrix} ⎝ ⎛ x 1 + x 2 x 2 + x 3 x 1 − x 3 2 x 1 + x 2 − x 3 ⎠ ⎞ = ⎝ ⎛ x 1 0 x 1 2 x 1 ⎠ ⎞ + ⎝ ⎛ x 2 x 2 0 x 2 ⎠ ⎞ + ⎝ ⎛ 0 x 3 − x 3 − x 3 ⎠ ⎞
Check if the vectors are linearly independent:
( 1 0 1 2 1 1 0 1 0 1 − 1 − 1 ) = ( 1 0 1 2 0 1 − 1 − 1 0 1 − 1 − 1 ) = ( 1 0 1 2 0 1 − 1 − 1 0 0 0 0 ) \begin{pmatrix}
1 & 0 & 1 & 2 \\
1 & 1 & 0 & 1 \\
0 & 1 & -1 & -1
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & -1 \\
0 & 1 & -1 & -1
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix} ⎝ ⎛ 1 1 0 0 1 1 1 0 − 1 2 1 − 1 ⎠ ⎞ = ⎝ ⎛ 1 0 0 0 1 1 1 − 1 − 1 2 − 1 − 1 ⎠ ⎞ = ⎝ ⎛ 1 0 0 0 1 0 1 − 1 0 2 − 1 0 ⎠ ⎞
So its basis is ( 1 0 1 2 ) , ( 0 1 − 1 − 1 ) \begin{pmatrix}
1 \\
0 \\
1 \\
2
\end{pmatrix},
\begin{pmatrix}
0 \\
1 \\
-1 \\
-1
\end{pmatrix} ⎝ ⎛ 1 0 1 2 ⎠ ⎞ , ⎝ ⎛ 0 1 − 1 − 1 ⎠ ⎞ .
Comments