Question #105833
Let T:R^3--->R^4 be defined by T(x1,x2,x3)=(x1+x2, x2+x3, x1-x3, 2x1+x2-x3). Check T is operator. Find kernel and range of T. Find dimensions of kernel.
1
Expert's answer
2020-03-19T05:32:17-0400

First we prove that T is a linear operator:

T((x1x2x3)+(y1y2y3))=T(x1+y1x2+y2x3+y3)=(x1+y1+x2+y2x2+y2+x3+y3x1+y1x3y32x1+2y1+x2+y2x3y3)==(x1+x2x2+x3x1x32x1+x2x3)+(y1+y2y2+y3y1y32y1+y2y3)=T(x1x2x3)+T(y1y2y3)T(α(x1x2x3))=T((αx1αx2αx3))=(αx1+αx2αx2+αx3αx1αx32αx1+αx2αx3)=(α(x1+x2)α(x2+x3)α(x1x3)α(2x1+x2x3))==α(x1+x2x2+x3x1x32x1+x2x3)=αT(x1x2x3)T(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}+ \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}) = T\begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 + x_2 + y_2\\ x_2 + y_2 + x_3 + y_3\\ x_1 + y_1 - x_3 - y_3 \\ 2x_1 + 2y_1 + x_2 + y_2 - x_3 - y_3 \end{pmatrix} = \\ = \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_1 - x_3 \\ 2x_1 + x_2 - x_3 \end{pmatrix} + \begin{pmatrix} y_1 + y_2\\ y_2 + y_3\\ y_1 - y_3 \\ 2y_1 + y_2 - y_3 \end{pmatrix} = T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}+ T\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \\ T(\alpha\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}) = T(\begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \alpha x_3 \end{pmatrix}) = \begin{pmatrix} \alpha x_1 + \alpha x_2 \\ \alpha x_2 + \alpha x_3 \\ \alpha x_1 - \alpha x_3 \\ 2\alpha x_1 + \alpha x_2 - \alpha x_3 \end{pmatrix} = \begin{pmatrix} \alpha(x_1 + x_2) \\ \alpha(x_2 + x_3) \\ \alpha(x_1 - x_3) \\ \alpha(2x_1 + x_2 - x_3) \end{pmatrix} = \\ = \alpha\begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_1 - x_3 \\ 2x_1 + x_2 - x_3 \end{pmatrix} = \alpha T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\

Then we find the kernel:

(x1+x2x2+x3x1x32x1+x2x3)=(0000)(x1+x2x2+x3x1x32x1+x2x3)=(110011101211)(x1x2x3)(110011101211)=(110110101110)=(110101000000)=(110011000000)x2=x3x1=x2=x3\begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_1 - x_3 \\ 2x_1 + x_2 - x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_1 - x_3 \\ 2x_1 + x_2 - x_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \\ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \\ 2 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ x_2 = -x_3 \\ x_1 = -x_2 = x_3

So the kernel is all vectors given as(x3x3x3)\begin{pmatrix} x_3\\ -x_3 \\ x_3 \end{pmatrix} . Its dimension is 1, its basis is (111)\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} .

Finally we find the range of T:

(x1+x2x2+x3x1x32x1+x2x3)=(x10x12x1)+(x2x20x2)+(0x3x3x3)\begin{pmatrix} x_1 + x_2 \\ x_2 + x_3 \\ x_1 - x_3 \\ 2x_1 + x_2 - x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ 0 \\ x_1 \\ 2x_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ x_2 \\ 0 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ x_3 \\ -x_3 \\ -x_3 \end{pmatrix}

Check if the vectors are linearly independent:

(101211010111)=(101201110111)=(101201110000)\begin{pmatrix} 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}

So its basis is (1012),(0111)\begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \\ -1 \end{pmatrix} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS