{u1,u2,u3} is basis of V.
"c_1u_1+c_2u_2+c_3u_3=0"
"v_1=u_1-2u_2"
"v_2=2u_1-7u_2+4u_3"
"v_3=-3u_1+8u_2-u_3"
"v_1+v_2+v_3=3u_3-u_2"
"u_3=\\frac{1}{3}(u_2+(v_1+v_2+v_3))"
"u_1=v_1+2u_2"
"v_2=2( v_1+2u_2 )-7u_2+\\frac{4}{3}(u_2+(v_1+v_2+v_3)) )"
"u_2=(10v_1+v_2+4v_3)\/3"
"v_1,v_2,v_3" in terms of "u_1,u_2,u_3" .
"u_1=(23v_1+2v_2+8v_3)\/3"
"u_2=(10v_1+v_2+4v_3)\/3"
"u_3=(11v_1+2v_2+5v_3)\/3"
Putting these in "c_1u_1+c_2u_2+c_3u_3=0"
"c_1(23v_1+2v_2+8v_3)\/3+c_2(10v_1+v_2+4v_3)\/3+c_3(11v_1+2v_2+5v_3)\/3=0"
"v_1(23c_1+10c_2+11c_3)\/3+v_2(2c_1+c_2+2c_3)\/3+v_3(8c_1+4c_2+5c_3)\/3=0"
"d_1v_1+d_2v_2+d_3v_3=0"
"d_1=(23c_1+10c_2+11c_3)\/3"
"d_2=(2c_1+c_2+2c_3)\/3"
"d_3=(8c_1+4c_2+5c_3)\/3"
"c_1=c_2=c_3=0"
So, "d_1=d_2=d_3=0"
Thus, {"v_1,v_2,v_3" } spans and is linearly independent.
{"v_1 , v_2 , v_3"} is also a basis of V.
Comments
Leave a comment