{u1,u2,u3} is basis of V.
c1u1+c2u2+c3u3=0c_1u_1+c_2u_2+c_3u_3=0c1u1+c2u2+c3u3=0
v1=u1−2u2v_1=u_1-2u_2v1=u1−2u2
v2=2u1−7u2+4u3v_2=2u_1-7u_2+4u_3v2=2u1−7u2+4u3
v3=−3u1+8u2−u3v_3=-3u_1+8u_2-u_3v3=−3u1+8u2−u3
v1+v2+v3=3u3−u2v_1+v_2+v_3=3u_3-u_2v1+v2+v3=3u3−u2
u3=13(u2+(v1+v2+v3))u_3=\frac{1}{3}(u_2+(v_1+v_2+v_3))u3=31(u2+(v1+v2+v3))
u1=v1+2u2u_1=v_1+2u_2u1=v1+2u2
v2=2(v1+2u2)−7u2+43(u2+(v1+v2+v3)))v_2=2( v_1+2u_2 )-7u_2+\frac{4}{3}(u_2+(v_1+v_2+v_3)) )v2=2(v1+2u2)−7u2+34(u2+(v1+v2+v3)))
u2=(10v1+v2+4v3)/3u_2=(10v_1+v_2+4v_3)/3u2=(10v1+v2+4v3)/3
v1,v2,v3v_1,v_2,v_3v1,v2,v3 in terms of u1,u2,u3u_1,u_2,u_3u1,u2,u3 .
u1=(23v1+2v2+8v3)/3u_1=(23v_1+2v_2+8v_3)/3u1=(23v1+2v2+8v3)/3
u3=(11v1+2v2+5v3)/3u_3=(11v_1+2v_2+5v_3)/3u3=(11v1+2v2+5v3)/3
Putting these in c1u1+c2u2+c3u3=0c_1u_1+c_2u_2+c_3u_3=0c1u1+c2u2+c3u3=0
c1(23v1+2v2+8v3)/3+c2(10v1+v2+4v3)/3+c3(11v1+2v2+5v3)/3=0c_1(23v_1+2v_2+8v_3)/3+c_2(10v_1+v_2+4v_3)/3+c_3(11v_1+2v_2+5v_3)/3=0c1(23v1+2v2+8v3)/3+c2(10v1+v2+4v3)/3+c3(11v1+2v2+5v3)/3=0
v1(23c1+10c2+11c3)/3+v2(2c1+c2+2c3)/3+v3(8c1+4c2+5c3)/3=0v_1(23c_1+10c_2+11c_3)/3+v_2(2c_1+c_2+2c_3)/3+v_3(8c_1+4c_2+5c_3)/3=0v1(23c1+10c2+11c3)/3+v2(2c1+c2+2c3)/3+v3(8c1+4c2+5c3)/3=0
d1v1+d2v2+d3v3=0d_1v_1+d_2v_2+d_3v_3=0d1v1+d2v2+d3v3=0
d1=(23c1+10c2+11c3)/3d_1=(23c_1+10c_2+11c_3)/3d1=(23c1+10c2+11c3)/3
d2=(2c1+c2+2c3)/3d_2=(2c_1+c_2+2c_3)/3d2=(2c1+c2+2c3)/3
d3=(8c1+4c2+5c3)/3d_3=(8c_1+4c_2+5c_3)/3d3=(8c1+4c2+5c3)/3
c1=c2=c3=0c_1=c_2=c_3=0c1=c2=c3=0
So, d1=d2=d3=0d_1=d_2=d_3=0d1=d2=d3=0
Thus, {v1,v2,v3v_1,v_2,v_3v1,v2,v3 } spans and is linearly independent.
{v1,v2,v3v_1 , v_2 , v_3v1,v2,v3} is also a basis of V.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments