x 1 − x 2 − 2 x 3 + 2 x 4 − 3 x 5 = 0 x_1-x_2-2x_3+2x_4-3x_5=0 x 1 − x 2 − 2 x 3 + 2 x 4 − 3 x 5 = 0
x 1 − x 2 − x 3 + x 4 − 2 x 5 = 0 x_1-x_2-x_3+x_4-2x_5=0 x 1 − x 2 − x 3 + x 4 − 2 x 5 = 0
Solving both of them we get;
x 1 − x 2 = 2 x 3 − 2 x 4 + 3 x 5 x_1-x_2=2x_3-2x_4+3x_5 x 1 − x 2 = 2 x 3 − 2 x 4 + 3 x 5
x 1 − x 2 = x 3 − x 4 + 2 x 5 x_1-x_2=x_3-x_4+2x_5 x 1 − x 2 = x 3 − x 4 + 2 x 5
2 x 3 − 2 x 4 + 3 x 5 = x 3 − x 4 + 2 x 5 2x_3-2x_4+3x_5=x_3-x_4+2x_5 2 x 3 − 2 x 4 + 3 x 5 = x 3 − x 4 + 2 x 5
x 4 = x 3 + x 5 x_4=x_3+x_5 x 4 = x 3 + x 5
x 1 − x 2 = x 3 − x 4 + 2 x 5 x_1-x_2=x_3-x_4+2x_5 x 1 − x 2 = x 3 − x 4 + 2 x 5
x 1 − x 2 = x 5 x_1-x_2=x_5 x 1 − x 2 = x 5
x 1 = x 2 + x 5 x_1=x_2+x_5 x 1 = x 2 + x 5
( x 1 x 2 x 3 x 4 x 5 ) = ( x 2 + x 5 x 2 x 3 x 3 + x 5 x 5 ) \begin{pmatrix}
x_1 \\
x_2 \\
x_3\\
x_4\\
x_5
\end{pmatrix}=\begin{pmatrix}
x_2+x_5 \\
x_2 \\
x_3\\
x_3+x_5\\
x_5
\end{pmatrix} ⎝ ⎛ x 1 x 2 x 3 x 4 x 5 ⎠ ⎞ = ⎝ ⎛ x 2 + x 5 x 2 x 3 x 3 + x 5 x 5 ⎠ ⎞
( x 2 + x 5 x 2 x 3 x 3 + x 5 x 5 ) = ( x 2 x 2 0 0 0 ) + ( x 5 0 0 x 5 x 5 ) + ( 0 0 x 3 x 3 0 ) \begin{pmatrix}
x_2+x_5 \\
x_2 \\
x_3\\
x_3+x_5\\
x_5
\end{pmatrix}=\begin{pmatrix}
x_2\\
x_2\\
0\\
0\\
0
\end{pmatrix}+\begin{pmatrix}
x_5\\
0\\
0\\
x_5\\
x_5
\end{pmatrix}+\begin{pmatrix}
0\\
0\\
x_3\\
x_3\\
0
\end{pmatrix} ⎝ ⎛ x 2 + x 5 x 2 x 3 x 3 + x 5 x 5 ⎠ ⎞ = ⎝ ⎛ x 2 x 2 0 0 0 ⎠ ⎞ + ⎝ ⎛ x 5 0 0 x 5 x 5 ⎠ ⎞ + ⎝ ⎛ 0 0 x 3 x 3 0 ⎠ ⎞
( x 2 + x 5 x 2 x 3 x 3 + x 5 x 5 ) = ( 1 1 0 0 0 ) x 2 + ( 1 0 0 1 1 ) x 5 + ( 0 0 1 1 0 ) x 3 \begin{pmatrix}
x_2+x_5 \\
x_2 \\
x_3\\
x_3+x_5\\
x_5
\end{pmatrix}=\begin{pmatrix}
1\\
1\\
0\\
0\\
0
\end{pmatrix}x_2+\begin{pmatrix}
1\\
0\\
0\\
1\\
1
\end{pmatrix}x_5+\begin{pmatrix}
0\\
0\\
1\\
1\\
0
\end{pmatrix}x_3 ⎝ ⎛ x 2 + x 5 x 2 x 3 x 3 + x 5 x 5 ⎠ ⎞ = ⎝ ⎛ 1 1 0 0 0 ⎠ ⎞ x 2 + ⎝ ⎛ 1 0 0 1 1 ⎠ ⎞ x 5 + ⎝ ⎛ 0 0 1 1 0 ⎠ ⎞ x 3
( 1 1 0 0 0 ) , ( 1 0 0 1 1 ) , ( 0 0 1 1 0 ) {\begin{pmatrix}
1\\
1\\
0\\
0\\
0
\end{pmatrix},\begin{pmatrix}
1\\
0\\
0\\
1\\
1
\end{pmatrix},\begin{pmatrix}
0\\
0\\
1\\
1\\
0
\end{pmatrix}} ⎝ ⎛ 1 1 0 0 0 ⎠ ⎞ , ⎝ ⎛ 1 0 0 1 1 ⎠ ⎞ , ⎝ ⎛ 0 0 1 1 0 ⎠ ⎞ Is the basis of V.
Dimension of V is 3.
(b)If W is a solution space of homogenous system of equation x 1 − x 2 − 2 x 3 + 2 x 4 − 3 x 5 = 0 x_1-x_2-2x_3+2x_4-3x_5=0 x 1 − x 2 − 2 x 3 + 2 x 4 − 3 x 5 = 0
x 1 = x 2 + 2 x 3 − 2 x 4 + 3 x 5 x_1=x_2+2x_3-2x_4+3x_5 x 1 = x 2 + 2 x 3 − 2 x 4 + 3 x 5
( x 1 x 2 x 3 x 4 x 5 ) = ( x 2 + 2 x 3 − 2 x 4 + 3 x 5 x 2 x 3 x 4 x 5 ) \begin{pmatrix}
x_1 \\
x_2 \\
x_3\\
x_4\\
x_5
\end{pmatrix}=\begin{pmatrix}
x_2+2x_3-2x_4+3x_5 \\
x_2 \\
x_3\\
x_4\\
x_5
\end{pmatrix} ⎝ ⎛ x 1 x 2 x 3 x 4 x 5 ⎠ ⎞ = ⎝ ⎛ x 2 + 2 x 3 − 2 x 4 + 3 x 5 x 2 x 3 x 4 x 5 ⎠ ⎞
( x 2 + 2 x 3 − 2 x 4 + 3 x 5 x 2 x 3 x 4 x 5 ) = ( x 2 x 2 0 0 0 ) + ( 2 x 3 0 x 3 0 0 ) + ( − 2 x 4 0 0 x 4 0 ) + ( 3 x 5 0 0 0 x 5 ) \begin{pmatrix}
x_2+2x_3-2x_4+3x_5 \\
x_2 \\
x_3\\
x_4\\
x_5
\end{pmatrix}=\begin{pmatrix}
x_2\\
x_2\\
0\\
0\\
0
\end{pmatrix}+\begin{pmatrix}
2 x_3\\
0\\
x_3\\
0\\
0
\end{pmatrix}+\begin{pmatrix}
-2x_4\\
0\\
0\\
x_4\\
0
\end{pmatrix}+\begin{pmatrix}
3x_5\\
0\\
0\\
0\\
x_5
\end{pmatrix} ⎝ ⎛ x 2 + 2 x 3 − 2 x 4 + 3 x 5 x 2 x 3 x 4 x 5 ⎠ ⎞ = ⎝ ⎛ x 2 x 2 0 0 0 ⎠ ⎞ + ⎝ ⎛ 2 x 3 0 x 3 0 0 ⎠ ⎞ + ⎝ ⎛ − 2 x 4 0 0 x 4 0 ⎠ ⎞ + ⎝ ⎛ 3 x 5 0 0 0 x 5 ⎠ ⎞
( x 2 + 2 x 3 − 2 x 4 + 3 x 5 x 2 x 3 x 4 x 5 ) = ( 1 1 0 0 0 ) x 2 + ( 2 0 1 0 0 ) x 3 + ( − 2 0 0 1 0 ) x 4 + ( 3 0 0 0 1 ) x 5 \begin{pmatrix}
x_2+2x_3-2x_4+3x_5 \\
x_2 \\
x_3\\
x_4\\
x_5
\end{pmatrix}=\begin{pmatrix}
1\\
1\\
0\\
0\\
0
\end{pmatrix}x_2+\begin{pmatrix}
2 \\
0\\
1\\
0\\
0
\end{pmatrix}x_3+\begin{pmatrix}
-2\\
0\\
0\\
1\\
0
\end{pmatrix}x_4+\begin{pmatrix}
3\\
0\\
0\\
0\\
1
\end{pmatrix}x_5 ⎝ ⎛ x 2 + 2 x 3 − 2 x 4 + 3 x 5 x 2 x 3 x 4 x 5 ⎠ ⎞ = ⎝ ⎛ 1 1 0 0 0 ⎠ ⎞ x 2 + ⎝ ⎛ 2 0 1 0 0 ⎠ ⎞ x 3 + ⎝ ⎛ − 2 0 0 1 0 ⎠ ⎞ x 4 + ⎝ ⎛ 3 0 0 0 1 ⎠ ⎞ x 5
( 1 1 0 0 0 ) , ( 2 0 1 0 0 ) , ( − 2 0 0 1 0 ) , ( 3 0 0 0 1 ) {\begin{pmatrix}
1\\
1\\
0\\
0\\
0
\end{pmatrix},\begin{pmatrix}
2 \\
0\\
1\\
0\\
0
\end{pmatrix} ,\begin{pmatrix}
- 2 \\
0\\
0\\
1\\
0
\end{pmatrix},\begin{pmatrix}
3 \\
0\\
0\\
0\\
1
\end{pmatrix}} ⎝ ⎛ 1 1 0 0 0 ⎠ ⎞ , ⎝ ⎛ 2 0 1 0 0 ⎠ ⎞ , ⎝ ⎛ − 2 0 0 1 0 ⎠ ⎞ , ⎝ ⎛ 3 0 0 0 1 ⎠ ⎞ Is the basis of W.
Dimension of vector space W is 4.
Comments