Question #105593
Let V be the solution space of the following homogeneous linear system: x1 − x2 − 2x3 + 2x4 − 3x5 = 0 x1 − x2 − x3 + x4 − 2x5 = 0. (a) (2 points) Find a basis S of V and write down the dimension of V.
(b) (3 points) Finda subspace W of R5 suchthat W contains V anddim(W) = 4. Justify your answer.
1
Expert's answer
2020-03-17T12:46:55-0400

x1x22x3+2x43x5=0x_1-x_2-2x_3+2x_4-3x_5=0

x1x2x3+x42x5=0x_1-x_2-x_3+x_4-2x_5=0

Solving both of them we get;

x1x2=2x32x4+3x5x_1-x_2=2x_3-2x_4+3x_5

x1x2=x3x4+2x5x_1-x_2=x_3-x_4+2x_5

2x32x4+3x5=x3x4+2x52x_3-2x_4+3x_5=x_3-x_4+2x_5

x4=x3+x5x_4=x_3+x_5

x1x2=x3x4+2x5x_1-x_2=x_3-x_4+2x_5

x1x2=x5x_1-x_2=x_5

x1=x2+x5x_1=x_2+x_5

(x1x2x3x4x5)=(x2+x5x2x3x3+x5x5)\begin{pmatrix} x_1 \\ x_2 \\ x_3\\ x_4\\ x_5 \end{pmatrix}=\begin{pmatrix} x_2+x_5 \\ x_2 \\ x_3\\ x_3+x_5\\ x_5 \end{pmatrix}

(x2+x5x2x3x3+x5x5)=(x2x2000)+(x500x5x5)+(00x3x30)\begin{pmatrix} x_2+x_5 \\ x_2 \\ x_3\\ x_3+x_5\\ x_5 \end{pmatrix}=\begin{pmatrix} x_2\\ x_2\\ 0\\ 0\\ 0 \end{pmatrix}+\begin{pmatrix} x_5\\ 0\\ 0\\ x_5\\ x_5 \end{pmatrix}+\begin{pmatrix} 0\\ 0\\ x_3\\ x_3\\ 0 \end{pmatrix}

(x2+x5x2x3x3+x5x5)=(11000)x2+(10011)x5+(00110)x3\begin{pmatrix} x_2+x_5 \\ x_2 \\ x_3\\ x_3+x_5\\ x_5 \end{pmatrix}=\begin{pmatrix} 1\\ 1\\ 0\\ 0\\ 0 \end{pmatrix}x_2+\begin{pmatrix} 1\\ 0\\ 0\\ 1\\ 1 \end{pmatrix}x_5+\begin{pmatrix} 0\\ 0\\ 1\\ 1\\ 0 \end{pmatrix}x_3

(11000),(10011),(00110){\begin{pmatrix} 1\\ 1\\ 0\\ 0\\ 0 \end{pmatrix},\begin{pmatrix} 1\\ 0\\ 0\\ 1\\ 1 \end{pmatrix},\begin{pmatrix} 0\\ 0\\ 1\\ 1\\ 0 \end{pmatrix}} Is the basis of V.

Dimension of V is 3.

(b)If W is a solution space of homogenous system of equation x1x22x3+2x43x5=0x_1-x_2-2x_3+2x_4-3x_5=0

x1=x2+2x32x4+3x5x_1=x_2+2x_3-2x_4+3x_5

(x1x2x3x4x5)=(x2+2x32x4+3x5x2x3x4x5)\begin{pmatrix} x_1 \\ x_2 \\ x_3\\ x_4\\ x_5 \end{pmatrix}=\begin{pmatrix} x_2+2x_3-2x_4+3x_5 \\ x_2 \\ x_3\\ x_4\\ x_5 \end{pmatrix}

(x2+2x32x4+3x5x2x3x4x5)=(x2x2000)+(2x30x300)+(2x400x40)+(3x5000x5)\begin{pmatrix} x_2+2x_3-2x_4+3x_5 \\ x_2 \\ x_3\\ x_4\\ x_5 \end{pmatrix}=\begin{pmatrix} x_2\\ x_2\\ 0\\ 0\\ 0 \end{pmatrix}+\begin{pmatrix} 2 x_3\\ 0\\ x_3\\ 0\\ 0 \end{pmatrix}+\begin{pmatrix} -2x_4\\ 0\\ 0\\ x_4\\ 0 \end{pmatrix}+\begin{pmatrix} 3x_5\\ 0\\ 0\\ 0\\ x_5 \end{pmatrix}

(x2+2x32x4+3x5x2x3x4x5)=(11000)x2+(20100)x3+(20010)x4+(30001)x5\begin{pmatrix} x_2+2x_3-2x_4+3x_5 \\ x_2 \\ x_3\\ x_4\\ x_5 \end{pmatrix}=\begin{pmatrix} 1\\ 1\\ 0\\ 0\\ 0 \end{pmatrix}x_2+\begin{pmatrix} 2 \\ 0\\ 1\\ 0\\ 0 \end{pmatrix}x_3+\begin{pmatrix} -2\\ 0\\ 0\\ 1\\ 0 \end{pmatrix}x_4+\begin{pmatrix} 3\\ 0\\ 0\\ 0\\ 1 \end{pmatrix}x_5

(11000),(20100),(20010),(30001){\begin{pmatrix} 1\\ 1\\ 0\\ 0\\ 0 \end{pmatrix},\begin{pmatrix} 2 \\ 0\\ 1\\ 0\\ 0 \end{pmatrix} ,\begin{pmatrix} - 2 \\ 0\\ 0\\ 1\\ 0 \end{pmatrix},\begin{pmatrix} 3 \\ 0\\ 0\\ 0\\ 1 \end{pmatrix}} Is the basis of W.

Dimension of vector space W is 4.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS