"x_1-x_2-2x_3+2x_4-3x_5=0"
"x_1-x_2-x_3+x_4-2x_5=0"
Solving both of them we get;
"x_1-x_2=2x_3-2x_4+3x_5"
"x_1-x_2=x_3-x_4+2x_5"
"2x_3-2x_4+3x_5=x_3-x_4+2x_5"
"x_4=x_3+x_5"
"x_1-x_2=x_3-x_4+2x_5"
"x_1-x_2=x_5"
"x_1=x_2+x_5"
"\\begin{pmatrix}\n x_1 \\\\\n x_2 \\\\\nx_3\\\\\nx_4\\\\\nx_5\n\\end{pmatrix}=\\begin{pmatrix}\n x_2+x_5 \\\\\n x_2 \\\\\n x_3\\\\\n x_3+x_5\\\\\n x_5\n\\end{pmatrix}"
"\\begin{pmatrix}\n x_2+x_5 \\\\\n x_2 \\\\\n x_3\\\\\n x_3+x_5\\\\\n x_5\n\\end{pmatrix}=\\begin{pmatrix}\n x_2\\\\\n x_2\\\\\n0\\\\\n0\\\\\n0\n\\end{pmatrix}+\\begin{pmatrix}\n x_5\\\\\n 0\\\\\n0\\\\\nx_5\\\\\nx_5\n\\end{pmatrix}+\\begin{pmatrix}\n 0\\\\\n 0\\\\\nx_3\\\\\nx_3\\\\\n0\n\\end{pmatrix}"
"\\begin{pmatrix}\n x_2+x_5 \\\\\n x_2 \\\\\n x_3\\\\\n x_3+x_5\\\\\n x_5\n\\end{pmatrix}=\\begin{pmatrix}\n 1\\\\\n 1\\\\\n0\\\\\n0\\\\\n0\n\\end{pmatrix}x_2+\\begin{pmatrix}\n 1\\\\\n 0\\\\\n0\\\\\n1\\\\\n1\n\\end{pmatrix}x_5+\\begin{pmatrix}\n 0\\\\\n 0\\\\\n1\\\\\n1\\\\\n0\n\\end{pmatrix}x_3"
"{\\begin{pmatrix}\n 1\\\\\n 1\\\\\n0\\\\\n0\\\\\n0\n\\end{pmatrix},\\begin{pmatrix}\n 1\\\\\n 0\\\\\n0\\\\\n1\\\\\n1\n\\end{pmatrix},\\begin{pmatrix}\n 0\\\\\n 0\\\\\n1\\\\\n1\\\\\n0\n\\end{pmatrix}}" Is the basis of V.
Dimension of V is 3.
(b)If W is a solution space of homogenous system of equation "x_1-x_2-2x_3+2x_4-3x_5=0"
"x_1=x_2+2x_3-2x_4+3x_5"
"\\begin{pmatrix}\n x_1 \\\\\n x_2 \\\\\nx_3\\\\\nx_4\\\\\nx_5\n\\end{pmatrix}=\\begin{pmatrix}\n x_2+2x_3-2x_4+3x_5 \\\\\n x_2 \\\\\n x_3\\\\\n x_4\\\\\n x_5\n\\end{pmatrix}"
"\\begin{pmatrix}\n x_2+2x_3-2x_4+3x_5 \\\\\n x_2 \\\\\n x_3\\\\\n x_4\\\\\n x_5\n\\end{pmatrix}=\\begin{pmatrix}\n x_2\\\\\n x_2\\\\\n0\\\\\n0\\\\\n0\n\\end{pmatrix}+\\begin{pmatrix}\n 2 x_3\\\\\n 0\\\\\nx_3\\\\\n0\\\\\n0\n\\end{pmatrix}+\\begin{pmatrix}\n -2x_4\\\\\n 0\\\\\n0\\\\\nx_4\\\\\n0\n\\end{pmatrix}+\\begin{pmatrix}\n 3x_5\\\\\n 0\\\\\n0\\\\\n0\\\\\nx_5\n\\end{pmatrix}"
"\\begin{pmatrix}\n x_2+2x_3-2x_4+3x_5 \\\\\n x_2 \\\\\n x_3\\\\\n x_4\\\\\n x_5\n\\end{pmatrix}=\\begin{pmatrix}\n 1\\\\\n 1\\\\\n0\\\\\n0\\\\\n0\n\\end{pmatrix}x_2+\\begin{pmatrix}\n 2 \\\\\n 0\\\\\n1\\\\\n0\\\\\n0\n\\end{pmatrix}x_3+\\begin{pmatrix}\n -2\\\\\n 0\\\\\n0\\\\\n1\\\\\n0\n\\end{pmatrix}x_4+\\begin{pmatrix}\n 3\\\\\n 0\\\\\n0\\\\\n0\\\\\n1\n\\end{pmatrix}x_5"
"{\\begin{pmatrix}\n 1\\\\\n 1\\\\\n0\\\\\n0\\\\\n0\n\\end{pmatrix},\\begin{pmatrix}\n 2 \\\\\n 0\\\\\n1\\\\\n0\\\\\n0\n\\end{pmatrix} ,\\begin{pmatrix}\n- 2 \\\\\n 0\\\\\n0\\\\\n1\\\\\n0\n\\end{pmatrix},\\begin{pmatrix}\n 3 \\\\\n 0\\\\\n0\\\\\n0\\\\\n1\n\\end{pmatrix}}" Is the basis of W.
Dimension of vector space W is 4.
Comments
Leave a comment