Question #106055
Check whether following system of equations has a solution.
3x+2y+6z+4w=4
x+2y+2z+w=5
x+z+3w=3
1
Expert's answer
2020-03-29T10:00:32-0400

First we construct and transform a matrix for this system:

(326441221510133)=R13R2,R2R3(0401110212210133)=R3R1,R1R3=(1013302122040111)=R3+2R2(101330212200237)\begin{pmatrix} 3 & 2 & 6 & 4 &|& 4 \\ 1 & 2 & 2 & 1 &|& 5 \\ 1 & 0 & 1 & 3 &|& 3 \end{pmatrix} \overset{R_1 - 3R_2, R_2 - R_3}{=} \begin{pmatrix} 0 & -4 & 0 & 1 &|& -11 \\ 0 & 2 & 1 & -2 &|& 2 \\ 1 & 0 & 1 & 3 &|& 3 \end{pmatrix} \overset{R_3 \to R_1, R_1 \to R_3}{=} \\ = \begin{pmatrix} 1 & 0 & 1 & 3 &|& 3 \\ 0 & 2 & 1 & -2 &|& 2 \\ 0 & -4 & 0 & 1 &|& -11 \end{pmatrix} \overset{R_3 + 2R_2}{=} \begin{pmatrix} 1 & 0 & 1 & 3 &|& 3 \\ 0 & 2 & 1 & -2 &|& 2 \\ 0 & 0 & 2 & -3 &|& -7 \end{pmatrix}\\

z=3w72y=z+2w+22=z2+w+1=73w4+w+1=w+114x=z3w+3=73w23w+3=139w2z = \frac{3w - 7}{2}\\ y = \frac{-z + 2w + 2}{2} = -\frac{z}{2} + w + 1 = \frac{7 - 3w}{4} + w + 1 = \frac{w + 11}{4}\\ x = -z - 3w + 3 = \frac{7 - 3w}{2} -3w + 3 = \frac{13 - 9w}{2}

So a solution of the system exists.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS