First we construct and transform a matrix for this system:
"\\begin{pmatrix}\n 3 & 2 & 6 & 4 &|& 4 \\\\\n 1 & 2 & 2 & 1 &|& 5 \\\\\n 1 & 0 & 1 & 3 &|& 3 \n\\end{pmatrix} \\overset{R_1 - 3R_2, R_2 - R_3}{=}\n\\begin{pmatrix}\n 0 & -4 & 0 & 1 &|& -11 \\\\\n 0 & 2 & 1 & -2 &|& 2 \\\\\n 1 & 0 & 1 & 3 &|& 3 \n\\end{pmatrix} \\overset{R_3 \\to R_1, R_1 \\to R_3}{=} \\\\\n= \\begin{pmatrix}\n 1 & 0 & 1 & 3 &|& 3 \\\\\n 0 & 2 & 1 & -2 &|& 2 \\\\\n 0 & -4 & 0 & 1 &|& -11 \n\\end{pmatrix} \\overset{R_3 + 2R_2}{=}\n\\begin{pmatrix}\n 1 & 0 & 1 & 3 &|& 3 \\\\\n 0 & 2 & 1 & -2 &|& 2 \\\\\n 0 & 0 & 2 & -3 &|& -7 \n\\end{pmatrix}\\\\"
"z = \\frac{3w - 7}{2}\\\\\ny = \\frac{-z + 2w + 2}{2} = -\\frac{z}{2} + w + 1 = \\frac{7 - 3w}{4} + w + 1 = \\frac{w + 11}{4}\\\\\nx = -z - 3w + 3 = \\frac{7 - 3w}{2} -3w + 3 = \\frac{13 - 9w}{2}"
So a solution of the system exists.
Comments
Leave a comment