Question #101851
Let A = (-1 0 4)
6 3 2
2 5 6 3x3 then find
A/ Det(A)
B/ Cofactor of A
C/ adjoint of A
D/ Inverse of A
1
Expert's answer
2020-01-30T12:56:09-0500

We have matrix A = (104632256)\left(\begin{matrix}-1 & 0 & 4\\6 & 3 & 2\\2 & 5 & 6\end{matrix}\right);

Solution:

A) We compute determinant of A by using Laplace expansion (in this case for 3x3 matrix) Det(A)=j=13(1)1+ja1jM1j,Det(A) = \sum_{j=1}^3 (-1)^{1+j}a_{1j}M_{1j}, where M1jM_{1j} is a minor of A.

So,

Det(A)=1[3256]0[6226]+4[6325]Det(A) = -1 * \left[\begin{matrix}3 & 2\\5 & 6\end{matrix}\right] - 0 * \left[\begin{matrix}6 & 2\\2 & 6\end{matrix}\right] + 4*\left[\begin{matrix}6 & 3\\2 & 5\end{matrix}\right] =1(1810)+4(306)=88= -1*(18 - 10)+4*(30-6) = 88

As a result

Det(A)=88Det(A) = 88.

B) Let's call cofactor matrix of A as B. The B can be computed with next expression bij=(1)i+jaijMij.b_{ij} = (-1)^{i+j}a_{ij}M_{ij}. Following the given formula, we obtain: b11=(1)1+1[3256]=8;b_{11} = (-1)^{1+1} \left[\begin{matrix}3 & 2\\5 & 6\end{matrix}\right] = 8; b12=(1)1+2[6226]=32;b_{12} = (-1)^{1+2} \left[\begin{matrix}6 & 2\\2 & 6\end{matrix}\right] =-32;

b13=(1)1+3[6325]=24;b_{13} = (-1)^{1+3} \left[\begin{matrix}6 & 3\\2 & 5\end{matrix}\right] =24; b21=(1)2+1[0456]=20;b_{21} = (-1)^{2+1} \left[\begin{matrix}0 & 4\\5 & 6\end{matrix}\right] =20;

b22=(1)2+2[1426]=14;b_{22} = (-1)^{2+2} \left[\begin{matrix}-1 & 4\\2 & 6\end{matrix}\right] =-14; b23=(1)2+3[1025]=5;b_{23} = (-1)^{2+3} \left[\begin{matrix}-1 & 0\\2 & 5\end{matrix}\right] = 5;

b31=(1)3+1[0432]=12;b_{31} = (-1)^{3+1} \left[\begin{matrix}0 & 4\\3 & 2\end{matrix}\right] =-12; b32=(1)3+2[1462]=26;b_{32} = (-1)^{3+2} \left[\begin{matrix}-1 & 4\\6 & 2\end{matrix}\right] =26;

b33=(1)3+3[1063]=3;b_{33} = (-1)^{3+3} \left[\begin{matrix}-1 & 0\\6 & 3\end{matrix}\right] =-3;

Finally, we have

B=(832242014512263)B = \left(\begin{matrix} 8 & -32 & 24\\20 & -14 & 5\\-12 & 26 & -3\end{matrix}\right).

C) By definition adjoint (also called "adjugate") is just a transpose matrix of cofactor matrix A

adj(A)=BT.adj(A) = B^T.

In this case

adj(A)=(820123214262453).adj(A) = \left(\begin{matrix} 8 & 20 & -12\\-32 & -14 & 26\\24 & 5 & -3\end{matrix}\right).

D) Using the expression A1=1det(A)adj(A)A^{-1} = \frac{1}{det(A)}adj(A), we obtain

A1=188(820123214262453)=A^{-1}=\frac{1}{88}\left(\begin{matrix} 8 & 20 & -12\\-32 & -14 & 26\\24 & 5 & -3\end{matrix}\right) = [1115223224117441344311588388]\left[\begin{matrix}\frac{1}{11} & \frac{5}{22} & - \frac{3}{22}\\- \frac{4}{11} & - \frac{7}{44} & \frac{13}{44}\\\frac{3}{11} & \frac{5}{88} & - \frac{3}{88}\end{matrix}\right]



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS