1.
∣А−λE∣=∣∣−λ0216k31−λ−108k20118k−λ∣∣=0
λ2(18к−λ)+216к3+0−0−0−108к2λ=0
−λ3+18kλ2−108к2λ+216к3=0
λ3−18kλ2+108к2λ−216к3=0
(λ3−216к3)−(18kλ2−108к2λ)=0
(λ−6к)(λ2+6kλ+36к2)−18kλ(λ−6к)=0
(λ−6к)(λ2−12kλ+36к2)=0
λ−6к=0,(λ−6к)2=0
λ1=6к,λ2=6к,λ3=6к
2.
the required matrix with the characteristic polynomial
p(λ)=1−5λ+λ2+6λ3+λ4
in our case
⎝⎛010000100001−c0−c1−c2−c3⎠⎞
in our case
c0=1,c1=−5,c2=1,c3=6
there
⎝⎛010000100001−15−1−6⎠⎞
Comments