1.
"\u2223 \u0410-\u03bb E \u2223=\n\\begin{vmatrix}\n -\u03bb & 1&0 \\\\\n 0&-\u03bb& 1\\\\\n216k^3&-108k^2&18k-\u03bb\n\\end{vmatrix}=0\\\\"
"\u03bb^2 (18\u043a-\u03bb )+2 1 6 \u043a^ 3 +0-0-0-1 0 8 \u043a^2 \u03bb=0"
"-\u03bb ^3 +1 8 k \u03bb^2-1 0 8 \u043a^2 \u03bb+2 1 6 \u043a^3 =0"
"\u03bb ^3 -1 8 k \u03bb^2 +1 0 8 \u043a ^2 \u03bb-2 1 6 \u043a ^3 =0"
"( \u03bb ^3 -2 1 6 \u043a ^3 )-( 1 8 k \u03bb ^2 -1 0 8 \u043a ^2 \u03bb)=0"
"( \u03bb-6 \u043a ) ( \u03bb ^2 +6 k \u03bb+3 6 \u043a ^2 )-1 8 k \u03bb ( \u03bb-6 \u043a )=0"
"( \u03bb-6 \u043a ) ( \u03bb ^2 -1 2 k \u03bb+3 6 \u043a ^2 )=0"
"\u03bb-6 \u043a=0 ,( \u03bb-6 \u043a )^2 =0"
"\u03bb _1 =6 \u043a ,\\\\\n\u03bb _2 =6 \u043a ,\\\\\n\u03bb _3 =6 \u043a"
2.
the required matrix with the characteristic polynomial
"p ( \u03bb )=1-5 \u03bb+\u03bb ^2 +6 \u03bb ^3 +\u03bb ^4"
in our case
"\\begin{pmatrix}\n 0 &0&0&-c_0 \\\\\n 1&0&0&-c_1\\\\\n0&1&0&-c_2\\\\\n0&0&1&-c_3\n\\end{pmatrix}"
in our case
"c _0 \u200b=1,c _1 =\u22125,c _2 =1,c _3 =6"
there
"\\begin{pmatrix}\n 0 &0&0&-1 \\\\\n 1&0&0&5\\\\\n0&1&0&-1\\\\\n0&0&1&-6\n\\end{pmatrix}"
Comments
Leave a comment