1
"\\forall x=(a+2,a,0), y=(b+2,b,0) , z=(c+2,c,0)"
Check the axioms subspace
"1) x+y=y+x\\\\\nx+y=(a+2,a,0)+(b+2,b,0)=\\\\\n=(a+b+4,a+b,0)\\\\\ny+x=(b+2,b,0)+(a+2,a,0)=\\\\\n=(b+a+4,b+a,0)\\\\"
Performed
"2) (x+y)+z=x+(y+z)\\\\\n(x+y)+z=(a+b+4,a+b,0)+(c+2,c,0)=\\\\\n=(a+b+c+6,a+b+c,0)\\\\\nx+(y+z)=(a+2,a,0)+(b+c+4,b+c,0)=\\\\\n=(a+b+c+6,a+b+c,0)\\\\"
Performed
3)
"\\exist z=(t+2,t,0): x+z=x\\\\\nx+z=(a+2,a,0)+(t+2,t,0)=\\\\\n=(a+t+4,a+t,0)=(a+2,a,0)"
"\\left \\{\\begin{matrix}\n a+t+4=a+2 \\\\\n a+t=a\\\\\n0=0\n\\end{matrix}\\right.\\\\\n\\left \\{\\begin{matrix}\n t=-2 \\\\\n t=0\n\\end{matrix}\\right.\\\\"
The system has no solution.
W is not a subspace of "R^3"
2
"\\forall u=(u_1,u_2), v=(v_1,v_2)\n\\\\\nu+v=(u_1+v_1+1,u_2+v_2+2)\\\\\nku=(ku_1,-ku_2)"
Then
"u=(2,1),\\\\ 2u=(2\\cdot2,-2\\cdot1)=(4,-2)\\\\\nv=(4,-1)\\\\\n2u+v=(4+4+1,-2+(-1)+2)=(9,-1)"
3
Find the determinant
"\\begin{vmatrix}\n 6 & 3&2 \\\\\n 3& 6&0\\\\\n0&0&2\n\\end{vmatrix}=\\\\\n=6\\cdot6\\cdot2+3\\cdot0\\cdot0+3\\cdot0\\cdot2-\\\\\n-2\\cdot6\\cdot0-3\\cdot3\\cdot2-0\\cdot0\\cdot6=72-18=54\\not=0"
The vectors "(6,3,2), (3,6,0),(0,0,2)" is a basis of "R^3".
4
Find the rank of the matrix A.
"rk(A)=rk\\begin{pmatrix}\n 1 & -2&3&9 \\\\\n 0 & 1&3&5\\\\\n0&-1&4&9\n\\end{pmatrix}=\\\\\n=rk\\begin{pmatrix}\n 1 & -2&3&9 \\\\\n 0 & 1&3&5\\\\\n0&0&7&14\n\\end{pmatrix}=3"
The basis of the row space consists of 3 vectors, for example,
"a_1=(1,-2,3,9)\\\\\na_2=(0,1,3,5)\\\\\na_3=(0,-1,4,9)"
Comments
Leave a comment