1
∀ x = ( a + 2 , a , 0 ) , y = ( b + 2 , b , 0 ) , z = ( c + 2 , c , 0 ) \forall x=(a+2,a,0), y=(b+2,b,0) , z=(c+2,c,0) ∀ x = ( a + 2 , a , 0 ) , y = ( b + 2 , b , 0 ) , z = ( c + 2 , c , 0 )
Check the axioms subspace
1 ) x + y = y + x x + y = ( a + 2 , a , 0 ) + ( b + 2 , b , 0 ) = = ( a + b + 4 , a + b , 0 ) y + x = ( b + 2 , b , 0 ) + ( a + 2 , a , 0 ) = = ( b + a + 4 , b + a , 0 ) 1) x+y=y+x\\
x+y=(a+2,a,0)+(b+2,b,0)=\\
=(a+b+4,a+b,0)\\
y+x=(b+2,b,0)+(a+2,a,0)=\\
=(b+a+4,b+a,0)\\ 1 ) x + y = y + x x + y = ( a + 2 , a , 0 ) + ( b + 2 , b , 0 ) = = ( a + b + 4 , a + b , 0 ) y + x = ( b + 2 , b , 0 ) + ( a + 2 , a , 0 ) = = ( b + a + 4 , b + a , 0 )
Performed
2 ) ( x + y ) + z = x + ( y + z ) ( x + y ) + z = ( a + b + 4 , a + b , 0 ) + ( c + 2 , c , 0 ) = = ( a + b + c + 6 , a + b + c , 0 ) x + ( y + z ) = ( a + 2 , a , 0 ) + ( b + c + 4 , b + c , 0 ) = = ( a + b + c + 6 , a + b + c , 0 ) 2) (x+y)+z=x+(y+z)\\
(x+y)+z=(a+b+4,a+b,0)+(c+2,c,0)=\\
=(a+b+c+6,a+b+c,0)\\
x+(y+z)=(a+2,a,0)+(b+c+4,b+c,0)=\\
=(a+b+c+6,a+b+c,0)\\ 2 ) ( x + y ) + z = x + ( y + z ) ( x + y ) + z = ( a + b + 4 , a + b , 0 ) + ( c + 2 , c , 0 ) = = ( a + b + c + 6 , a + b + c , 0 ) x + ( y + z ) = ( a + 2 , a , 0 ) + ( b + c + 4 , b + c , 0 ) = = ( a + b + c + 6 , a + b + c , 0 )
Performed
3)
∃ z = ( t + 2 , t , 0 ) : x + z = x x + z = ( a + 2 , a , 0 ) + ( t + 2 , t , 0 ) = = ( a + t + 4 , a + t , 0 ) = ( a + 2 , a , 0 ) \exist z=(t+2,t,0): x+z=x\\
x+z=(a+2,a,0)+(t+2,t,0)=\\
=(a+t+4,a+t,0)=(a+2,a,0) ∃ z = ( t + 2 , t , 0 ) : x + z = x x + z = ( a + 2 , a , 0 ) + ( t + 2 , t , 0 ) = = ( a + t + 4 , a + t , 0 ) = ( a + 2 , a , 0 )
{ a + t + 4 = a + 2 a + t = a 0 = 0 { t = − 2 t = 0 \left \{\begin{matrix}
a+t+4=a+2 \\
a+t=a\\
0=0
\end{matrix}\right.\\
\left \{\begin{matrix}
t=-2 \\
t=0
\end{matrix}\right.\\ ⎩ ⎨ ⎧ a + t + 4 = a + 2 a + t = a 0 = 0 { t = − 2 t = 0
The system has no solution.
W is not a subspace of R 3 R^3 R 3
2
∀ u = ( u 1 , u 2 ) , v = ( v 1 , v 2 ) u + v = ( u 1 + v 1 + 1 , u 2 + v 2 + 2 ) k u = ( k u 1 , − k u 2 ) \forall u=(u_1,u_2), v=(v_1,v_2)
\\
u+v=(u_1+v_1+1,u_2+v_2+2)\\
ku=(ku_1,-ku_2) ∀ u = ( u 1 , u 2 ) , v = ( v 1 , v 2 ) u + v = ( u 1 + v 1 + 1 , u 2 + v 2 + 2 ) k u = ( k u 1 , − k u 2 )
Then
u = ( 2 , 1 ) , 2 u = ( 2 ⋅ 2 , − 2 ⋅ 1 ) = ( 4 , − 2 ) v = ( 4 , − 1 ) 2 u + v = ( 4 + 4 + 1 , − 2 + ( − 1 ) + 2 ) = ( 9 , − 1 ) u=(2,1),\\ 2u=(2\cdot2,-2\cdot1)=(4,-2)\\
v=(4,-1)\\
2u+v=(4+4+1,-2+(-1)+2)=(9,-1) u = ( 2 , 1 ) , 2 u = ( 2 ⋅ 2 , − 2 ⋅ 1 ) = ( 4 , − 2 ) v = ( 4 , − 1 ) 2 u + v = ( 4 + 4 + 1 , − 2 + ( − 1 ) + 2 ) = ( 9 , − 1 )
3
Find the determinant
∣ 6 3 2 3 6 0 0 0 2 ∣ = = 6 ⋅ 6 ⋅ 2 + 3 ⋅ 0 ⋅ 0 + 3 ⋅ 0 ⋅ 2 − − 2 ⋅ 6 ⋅ 0 − 3 ⋅ 3 ⋅ 2 − 0 ⋅ 0 ⋅ 6 = 72 − 18 = 54 ≠ 0 \begin{vmatrix}
6 & 3&2 \\
3& 6&0\\
0&0&2
\end{vmatrix}=\\
=6\cdot6\cdot2+3\cdot0\cdot0+3\cdot0\cdot2-\\
-2\cdot6\cdot0-3\cdot3\cdot2-0\cdot0\cdot6=72-18=54\not=0 ∣ ∣ 6 3 0 3 6 0 2 0 2 ∣ ∣ = = 6 ⋅ 6 ⋅ 2 + 3 ⋅ 0 ⋅ 0 + 3 ⋅ 0 ⋅ 2 − − 2 ⋅ 6 ⋅ 0 − 3 ⋅ 3 ⋅ 2 − 0 ⋅ 0 ⋅ 6 = 72 − 18 = 54 = 0
The vectors ( 6 , 3 , 2 ) , ( 3 , 6 , 0 ) , ( 0 , 0 , 2 ) (6,3,2), (3,6,0),(0,0,2) ( 6 , 3 , 2 ) , ( 3 , 6 , 0 ) , ( 0 , 0 , 2 ) is a basis of R 3 R^3 R 3 .
4
Find the rank of the matrix A.
r k ( A ) = r k ( 1 − 2 3 9 0 1 3 5 0 − 1 4 9 ) = = r k ( 1 − 2 3 9 0 1 3 5 0 0 7 14 ) = 3 rk(A)=rk\begin{pmatrix}
1 & -2&3&9 \\
0 & 1&3&5\\
0&-1&4&9
\end{pmatrix}=\\
=rk\begin{pmatrix}
1 & -2&3&9 \\
0 & 1&3&5\\
0&0&7&14
\end{pmatrix}=3 r k ( A ) = r k ⎝ ⎛ 1 0 0 − 2 1 − 1 3 3 4 9 5 9 ⎠ ⎞ = = r k ⎝ ⎛ 1 0 0 − 2 1 0 3 3 7 9 5 14 ⎠ ⎞ = 3
The basis of the row space consists of 3 vectors, for example,
a 1 = ( 1 , − 2 , 3 , 9 ) a 2 = ( 0 , 1 , 3 , 5 ) a 3 = ( 0 , − 1 , 4 , 9 ) a_1=(1,-2,3,9)\\
a_2=(0,1,3,5)\\
a_3=(0,-1,4,9) a 1 = ( 1 , − 2 , 3 , 9 ) a 2 = ( 0 , 1 , 3 , 5 ) a 3 = ( 0 , − 1 , 4 , 9 )
Comments