A diagonalizable matrix is diagonalized by a matrix of its eigenvectors. So A = P Λ P − 1 A=P\Lambda P^{-1 } A = P Λ P − 1 where P P P is the matrix whose columns are the eigenvectors of A A A and Λ \Lambda Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A . A. A .
P = ( 1 0 0 1 − 1 1 − 1 1 1 ) , Λ = ( 0 0 0 0 6 0 0 0 − 6 ) P=\begin{pmatrix}
1 & 0 & 0 \\
1 & -1 & 1 \\
-1 & 1 & 1
\end{pmatrix} , \Lambda=\begin{pmatrix}
0 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & -6
\end{pmatrix} P = ⎝ ⎛ 1 1 − 1 0 − 1 1 0 1 1 ⎠ ⎞ , Λ = ⎝ ⎛ 0 0 0 0 6 0 0 0 − 6 ⎠ ⎞
Find P − 1 P^{-1} P − 1
∣ 1 0 0 1 − 1 1 − 1 1 1 ∣ = 1 ∣ − 1 1 1 1 ∣ = 1 ( − 1 − 1 ) = − 2 ≠ 0 \begin{vmatrix}
1 & 0 & 0 \\
1 & -1 & 1 \\
-1 & 1 & 1
\end{vmatrix}=1\begin{vmatrix}
-1 & 1 \\
1 & 1
\end{vmatrix}=1(-1-1)=-2\not=0 ∣ ∣ 1 1 − 1 0 − 1 1 0 1 1 ∣ ∣ = 1 ∣ ∣ − 1 1 1 1 ∣ ∣ = 1 ( − 1 − 1 ) = − 2 = 0 C 11 = ( − 1 ) 1 + 1 ∣ − 1 1 1 1 ∣ = − 2 , C_{11}=(-1)^{1+1}\begin{vmatrix}
-1 & 1 \\
1 & 1
\end{vmatrix}=-2, C 11 = ( − 1 ) 1 + 1 ∣ ∣ − 1 1 1 1 ∣ ∣ = − 2 ,
C 12 = ( − 1 ) 1 + 2 ∣ 1 1 − 1 1 ∣ = − 2 , C_{12}=(-1)^{1+2}\begin{vmatrix}
1 & 1 \\
-1 & 1
\end{vmatrix}=-2, C 12 = ( − 1 ) 1 + 2 ∣ ∣ 1 − 1 1 1 ∣ ∣ = − 2 ,
C 13 = ( − 1 ) 1 + 3 ∣ 1 − 1 − 1 1 ∣ = 0 , C_{13}=(-1)^{1+3}\begin{vmatrix}
1 & -1 \\
-1 & 1
\end{vmatrix}=0, C 13 = ( − 1 ) 1 + 3 ∣ ∣ 1 − 1 − 1 1 ∣ ∣ = 0 ,
C 21 = ( − 1 ) 2 + 1 ∣ 0 0 1 1 ∣ = 0 , C_{21}=(-1)^{2+1}\begin{vmatrix}
0 & 0 \\
1 & 1
\end{vmatrix}=0, C 21 = ( − 1 ) 2 + 1 ∣ ∣ 0 1 0 1 ∣ ∣ = 0 ,
C 22 = ( − 1 ) 2 + 2 ∣ 1 0 − 1 1 ∣ = 1 , C_{22}=(-1)^{2+2}\begin{vmatrix}
1 & 0 \\
-1 & 1
\end{vmatrix}=1, C 22 = ( − 1 ) 2 + 2 ∣ ∣ 1 − 1 0 1 ∣ ∣ = 1 ,
C 23 = ( − 1 ) 2 + 3 ∣ 1 0 − 1 1 ∣ = − 1 , C_{23}=(-1)^{2+3}\begin{vmatrix}
1 & 0 \\
-1 & 1
\end{vmatrix}=-1, C 23 = ( − 1 ) 2 + 3 ∣ ∣ 1 − 1 0 1 ∣ ∣ = − 1 ,
C 31 = ( − 1 ) 3 + 1 ∣ 0 0 − 1 1 ∣ = 0 , C_{31}=(-1)^{3+1}\begin{vmatrix}
0 & 0 \\
-1 & 1
\end{vmatrix}=0, C 31 = ( − 1 ) 3 + 1 ∣ ∣ 0 − 1 0 1 ∣ ∣ = 0 ,
C 32 = ( − 1 ) 3 + 2 ∣ 1 0 1 1 ∣ = − 1 , C_{32}=(-1)^{3+2}\begin{vmatrix}
1 & 0 \\
1 & 1
\end{vmatrix}=-1, C 32 = ( − 1 ) 3 + 2 ∣ ∣ 1 1 0 1 ∣ ∣ = − 1 ,
C 33 = ( − 1 ) 3 + 3 ∣ 1 0 1 − 1 ∣ = − 1. C_{33}=(-1)^{3+3}\begin{vmatrix}
1 & 0 \\
1 & -1
\end{vmatrix}=-1. C 33 = ( − 1 ) 3 + 3 ∣ ∣ 1 1 0 − 1 ∣ ∣ = − 1.
C = ( − 2 − 2 0 0 1 − 1 0 − 1 − 1 ) C=\begin{pmatrix}
-2 & -2 & 0 \\
0 & 1 & -1 \\
0 & -1 & -1
\end{pmatrix} C = ⎝ ⎛ − 2 0 0 − 2 1 − 1 0 − 1 − 1 ⎠ ⎞ The adjount matrix is:
( − 2 0 0 − 2 1 − 1 0 − 1 − 1 ) \begin{pmatrix}
-2 & 0& 0 \\
-2 & 1 & -1 \\
0 & -1 & -1
\end{pmatrix} ⎝ ⎛ − 2 − 2 0 0 1 − 1 0 − 1 − 1 ⎠ ⎞ P − 1 = ( 1 0 0 1 − 0.5 0.5 0 0.5 0.5 ) P^{-1}=\begin{pmatrix}
1 & 0& 0 \\
1 & -0.5 & 0.5 \\
0 & 0.5 & 0.5
\end{pmatrix} P − 1 = ⎝ ⎛ 1 1 0 0 − 0.5 0.5 0 0.5 0.5 ⎠ ⎞ P Λ = ( 1 0 0 1 − 1 1 − 1 1 1 ) ( 0 0 0 0 6 0 0 0 − 6 ) = P\Lambda=\begin{pmatrix}
1 & 0 & 0 \\
1 & -1 & 1 \\
-1 & 1 & 1
\end{pmatrix}\begin{pmatrix}
0 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & -6
\end{pmatrix}= P Λ = ⎝ ⎛ 1 1 − 1 0 − 1 1 0 1 1 ⎠ ⎞ ⎝ ⎛ 0 0 0 0 6 0 0 0 − 6 ⎠ ⎞ =
= ( 0 0 0 0 − 6 − 6 0 6 − 6 ) =\begin{pmatrix}
0 & 0 & 0 \\
0 & -6 & -6 \\
0 & 6 & -6
\end{pmatrix} = ⎝ ⎛ 0 0 0 0 − 6 6 0 − 6 − 6 ⎠ ⎞
A = P Λ P − 1 = ( 0 0 0 0 − 6 − 6 0 6 − 6 ) ( 1 0 0 1 − 0.5 0.5 0 0.5 0.5 ) = A=P\Lambda P^{-1 }=\begin{pmatrix}
0 & 0 & 0 \\
0 & -6 & -6 \\
0 & 6 & -6
\end{pmatrix} \begin{pmatrix}
1 & 0& 0 \\
1 & -0.5 & 0.5 \\
0 & 0.5 & 0.5
\end{pmatrix}= A = P Λ P − 1 = ⎝ ⎛ 0 0 0 0 − 6 6 0 − 6 − 6 ⎠ ⎞ ⎝ ⎛ 1 1 0 0 − 0.5 0.5 0 0.5 0.5 ⎠ ⎞ =
= ( 0 0 0 − 6 0 − 6 6 − 6 0 ) =\begin{pmatrix}
0 & 0 & 0 \\
-6 & 0 & -6 \\
6 & -6 & 0
\end{pmatrix} = ⎝ ⎛ 0 − 6 6 0 0 − 6 0 − 6 0 ⎠ ⎞
A = ( 0 0 0 − 6 0 − 6 6 − 6 0 ) A=\begin{pmatrix}
0 & 0 & 0 \\
-6 & 0 & -6 \\
6 & -6 & 0
\end{pmatrix} A = ⎝ ⎛ 0 − 6 6 0 0 − 6 0 − 6 0 ⎠ ⎞
2.
(a) Let T : M 22 → M 22 T:M_{22}\to M_{22} T : M 22 → M 22 be the dilation operator with factor k = 3.
This means that T ( A ) = 3 A ∀ A ∈ M 22 T(A)=3A \ \ \ \forall A\in M_{22} T ( A ) = 3 A ∀ A ∈ M 22
A = ( 1 4 − 7 2 ) A=\begin{pmatrix}
1 & 4 \\
-7 & 2
\end{pmatrix} A = ( 1 − 7 4 2 ) Then
T ( A ) = 3 A = 3 ( 1 4 − 7 2 ) = ( 3 12 − 21 6 ) T(A)=3A=3\begin{pmatrix}
1 & 4 \\
-7 & 2
\end{pmatrix}=\begin{pmatrix}
3 & 12 \\
-21 & 6
\end{pmatrix} T ( A ) = 3 A = 3 ( 1 − 7 4 2 ) = ( 3 − 21 12 6 )
T ( A ) = ( 3 12 − 21 6 ) T(A)=\begin{pmatrix}
3 & 12 \\
-21 & 6
\end{pmatrix} T ( A ) = ( 3 − 21 12 6 ) (b) Find the rank and nullity of T.
As we know, nullity represents dimension of Kernel.
We have :
B ∈ K e r { T } = > T ( B ) = 0 B\in Ker{\{T\}}=>T(B)=0 B ∈ Ker { T } => T ( B ) = 0 = > 3 B = 0 = > K e r { T } = 0 =>3B=0=>Ker{\{T\}}=0 => 3 B = 0 => Ker { T } = 0 Which means that
n u l l i t y ( T ) = 0 nullity(T)=0 n u ll i t y ( T ) = 0
d i m ( M 22 ) = r a n k ( T ) + n u l l i t y ( T ) dim(M_{22})=rank(T)+nullity(T) d im ( M 22 ) = r ank ( T ) + n u ll i t y ( T ) d i m ( M 22 ) = 4 , n u l l i t y ( T ) = 0 dim(M_{22})=4, nullity(T)=0 d im ( M 22 ) = 4 , n u ll i t y ( T ) = 0 Hence
r a n k ( T ) = d i m ( M 22 ) − n u l l i t y ( T ) = 4 − 0 = 4 rank(T)=dim(M_{22})-nullity(T)=4-0=4 r ank ( T ) = d im ( M 22 ) − n u ll i t y ( T ) = 4 − 0 = 4 r a n k ( T ) = 4 rank(T)=4 r ank ( T ) = 4 3.
Let T : P 2 → P 2 T:P_{2}\to P_{2} T : P 2 → P 2 be the contraction operator with factor k = 1/6.
Find T ( 1 + 6 x + 12 x 2 ) T(1+6x+12x^2) T ( 1 + 6 x + 12 x 2 )
T ( p ( x ) ) = 1 6 p ( x ) , ∀ p ( x ) ∈ P 2 T(p(x))={1 \over 6}p(x),\ \forall p(x)\in P_2 T ( p ( x )) = 6 1 p ( x ) , ∀ p ( x ) ∈ P 2 That gives us:
T ( 1 + 6 x + 12 x 2 ) = 1 6 ( 1 + 6 x + 12 x 2 ) = 1 6 + x + 2 x 2 T(1+6x+12x^2)={1 \over 6}(1+6x+12x^2)={1 \over 6}+x+2x^2 T ( 1 + 6 x + 12 x 2 ) = 6 1 ( 1 + 6 x + 12 x 2 ) = 6 1 + x + 2 x 2 T ( 1 + 6 x + 12 x 2 ) = 1 6 + x + 2 x 2 T(1+6x+12x^2)={1 \over 6}+x+2x^2 T ( 1 + 6 x + 12 x 2 ) = 6 1 + x + 2 x 2 (b) Find the rank and nullity of T.
As we know, nullity represents dimension of Kernel.
We have :
p ∈ K e r { T } = > T ( p ( x ) ) = 0 , ∀ x p\in Ker{\{T\}}=>T(p(x))=0, \forall x p ∈ Ker { T } => T ( p ( x )) = 0 , ∀ x = > 1 6 p ( x ) = 0 = > K e r { T } = 0 =>{1 \over 6}p(x)=0=>Ker{\{T\}}=0 => 6 1 p ( x ) = 0 => Ker { T } = 0 Which means that
n u l l i t y ( T ) = 0 nullity(T)=0 n u ll i t y ( T ) = 0
d i m ( P 2 ) = r a n k ( T ) + n u l l i t y ( T ) dim(P_{2})=rank(T)+nullity(T) d im ( P 2 ) = r ank ( T ) + n u ll i t y ( T ) d i m ( P 2 ) = 3 , n u l l i t y ( T ) = 0 dim(P_{2})=3, nullity(T)=0 d im ( P 2 ) = 3 , n u ll i t y ( T ) = 0 Hence
r a n k ( T ) = d i m ( P 2 ) − n u l l i t y ( T ) = 3 − 0 = 3 rank(T)=dim(P_{2})-nullity(T)=3-0=3 r ank ( T ) = d im ( P 2 ) − n u ll i t y ( T ) = 3 − 0 = 3 r a n k ( T ) = 3 rank(T)=3 r ank ( T ) = 3
Comments