Question #101767
1. Find a 3 × 3 matrix A that has eigenvalues λ = 0, 6, − 6 with corresponding eigenvectors

0 0 0
1 , -1 , 1
-1 1 1

2. Let Upper T ⁢ colon Upper M Subscript 22 Baseline ⁢ right-arrow Upper M Subscript 22 be the dilation operator with factor k = 3.

(a) Find Upper T left-parenthesis Start 2 By 2 Matrix 1st Row 1st Column 1, 2nd Column 4 2nd Row 1st Column -7, 2nd Column 4 End Matrix right-parenthesis = ????

(b) Find the rank and nullity of T .

3. Let Upper T ⁢ colon Upper P Subscript 2 Baseline ⁢ right-arrow Upper P Subscript 2 be the contraction operator with factor k ⁢ equals StartFraction 1 Over 6 EndFraction Number .

(a) Find Upper T left-parenthesis 1 ⁢ plus 6 x ⁢ plus 12 x Superscript 2 Baseline right-parenthesis Number .

(b) Find the rank and nullity of T.
1
Expert's answer
2020-01-29T13:24:14-0500

A diagonalizable matrix is diagonalized by a matrix of its eigenvectors. So A=PΛP1A=P\Lambda P^{-1 } where PP is the matrix whose columns are the eigenvectors of AA and Λ\Lambda is a diagonal matrix whose diagonal entries are the eigenvalues of A.A.

P=(100111111),Λ=(000060006)P=\begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix} , \Lambda=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & -6 \end{pmatrix}

Find P1P^{-1}


100111111=11111=1(11)=20\begin{vmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{vmatrix}=1\begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix}=1(-1-1)=-2\not=0

C11=(1)1+11111=2,C_{11}=(-1)^{1+1}\begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix}=-2,

C12=(1)1+21111=2,C_{12}=(-1)^{1+2}\begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix}=-2,

C13=(1)1+31111=0,C_{13}=(-1)^{1+3}\begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix}=0,

C21=(1)2+10011=0,C_{21}=(-1)^{2+1}\begin{vmatrix} 0 & 0 \\ 1 & 1 \end{vmatrix}=0,

C22=(1)2+21011=1,C_{22}=(-1)^{2+2}\begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix}=1,

C23=(1)2+31011=1,C_{23}=(-1)^{2+3}\begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix}=-1,

C31=(1)3+10011=0,C_{31}=(-1)^{3+1}\begin{vmatrix} 0 & 0 \\ -1 & 1 \end{vmatrix}=0,

C32=(1)3+21011=1,C_{32}=(-1)^{3+2}\begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix}=-1,

C33=(1)3+31011=1.C_{33}=(-1)^{3+3}\begin{vmatrix} 1 & 0 \\ 1 & -1 \end{vmatrix}=-1.


C=(220011011)C=\begin{pmatrix} -2 & -2 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & -1 \end{pmatrix}

The adjount matrix is:


(200211011)\begin{pmatrix} -2 & 0& 0 \\ -2 & 1 & -1 \\ 0 & -1 & -1 \end{pmatrix}P1=(10010.50.500.50.5)P^{-1}=\begin{pmatrix} 1 & 0& 0 \\ 1 & -0.5 & 0.5 \\ 0 & 0.5 & 0.5 \end{pmatrix}

PΛ=(100111111)(000060006)=P\Lambda=\begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}\begin{pmatrix} 0 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & -6 \end{pmatrix}=

=(000066066)=\begin{pmatrix} 0 & 0 & 0 \\ 0 & -6 & -6 \\ 0 & 6 & -6 \end{pmatrix}

A=PΛP1=(000066066)(10010.50.500.50.5)=A=P\Lambda P^{-1 }=\begin{pmatrix} 0 & 0 & 0 \\ 0 & -6 & -6 \\ 0 & 6 & -6 \end{pmatrix} \begin{pmatrix} 1 & 0& 0 \\ 1 & -0.5 & 0.5 \\ 0 & 0.5 & 0.5 \end{pmatrix}=

=(000606660)=\begin{pmatrix} 0 & 0 & 0 \\ -6 & 0 & -6 \\ 6 & -6 & 0 \end{pmatrix}


A=(000606660)A=\begin{pmatrix} 0 & 0 & 0 \\ -6 & 0 & -6 \\ 6 & -6 & 0 \end{pmatrix}


2.

(a) Let T:M22M22T:M_{22}\to M_{22} be the dilation operator with factor k = 3.

This means that T(A)=3A   AM22T(A)=3A \ \ \ \forall A\in M_{22}


A=(1472)A=\begin{pmatrix} 1 & 4 \\ -7 & 2 \end{pmatrix}

Then


T(A)=3A=3(1472)=(312216)T(A)=3A=3\begin{pmatrix} 1 & 4 \\ -7 & 2 \end{pmatrix}=\begin{pmatrix} 3 & 12 \\ -21 & 6 \end{pmatrix}

T(A)=(312216)T(A)=\begin{pmatrix} 3 & 12 \\ -21 & 6 \end{pmatrix}

(b) Find the rank and nullity of T.

As we know, nullity represents dimension of Kernel.

We have :


BKer{T}=>T(B)=0B\in Ker{\{T\}}=>T(B)=0=>3B=0=>Ker{T}=0=>3B=0=>Ker{\{T\}}=0

Which means that


nullity(T)=0nullity(T)=0

dim(M22)=rank(T)+nullity(T)dim(M_{22})=rank(T)+nullity(T)dim(M22)=4,nullity(T)=0dim(M_{22})=4, nullity(T)=0

Hence


rank(T)=dim(M22)nullity(T)=40=4rank(T)=dim(M_{22})-nullity(T)=4-0=4rank(T)=4rank(T)=4

3.

Let T:P2P2T:P_{2}\to P_{2} be the contraction operator with factor k = 1/6.

Find T(1+6x+12x2)T(1+6x+12x^2)


T(p(x))=16p(x), p(x)P2T(p(x))={1 \over 6}p(x),\ \forall p(x)\in P_2

That gives us:


T(1+6x+12x2)=16(1+6x+12x2)=16+x+2x2T(1+6x+12x^2)={1 \over 6}(1+6x+12x^2)={1 \over 6}+x+2x^2T(1+6x+12x2)=16+x+2x2T(1+6x+12x^2)={1 \over 6}+x+2x^2

(b) Find the rank and nullity of T.

As we know, nullity represents dimension of Kernel.

We have :


pKer{T}=>T(p(x))=0,xp\in Ker{\{T\}}=>T(p(x))=0, \forall x=>16p(x)=0=>Ker{T}=0=>{1 \over 6}p(x)=0=>Ker{\{T\}}=0

Which means that


nullity(T)=0nullity(T)=0

dim(P2)=rank(T)+nullity(T)dim(P_{2})=rank(T)+nullity(T)dim(P2)=3,nullity(T)=0dim(P_{2})=3, nullity(T)=0

Hence


rank(T)=dim(P2)nullity(T)=30=3rank(T)=dim(P_{2})-nullity(T)=3-0=3rank(T)=3rank(T)=3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS