Question #101036
1. For purposes of this exercise, let us define an " X -matrix" to be a square matrix with an odd number of rows and columns that has 0's everywhere except on the two diagonals, where it has 1's. Find the rank and nullity of the following X -matrix.

close and open parenthesis 1 0 1
0 1 0
1 0 1

rank (X) =
nullity (X) =
1
Expert's answer
2020-01-10T11:09:29-0500

LetA=[101010101]Let A=\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 &0\\ 1&0&1 \end{bmatrix} be the given matrix. Performing the operation R3R3R1R_3 \gets R_3-R_1 we get;

A=[101010000]A=\begin{bmatrix} 1 & 0&1 \\ 0 & 1&0\\ 0&0&0 \end{bmatrix} Clearly, the largest sub matrix with non-zero determinant is of order 2X22\Chi2 .

    rank(A)=2\implies rank(A)=2 (Answer)


Null space of a matrix A is x given by the equation Ax=0Ax=0

[101010000].[x1x2x3]=[000]\begin{bmatrix} 1 & 0&1 \\ 0 & 1&0\\ 0&0&0 \end{bmatrix}.\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}=\begin{bmatrix} 0\\0\\0\end{bmatrix}     [x1+x3x20]=[000]\implies \begin{bmatrix} x_1+x_3 \\x_2\\0 \end{bmatrix} =\begin{bmatrix} 0\\0\\0\end{bmatrix} -----(i)


Thus, null space(A) is given by; x={x1x2x3}x=\begin{Bmatrix} x_1 & x_2&x_3 \end{Bmatrix} where x1,x2,x3x_1,x_2,x_3 follow(using (i)):

x1+x3=0    x3=x1x_1+x_3=0\implies x_3=-x_1 -----(ii)

x2=0x_2=0 ------(iii)

    nullspace(A)=[x1x2x3]=[x10x1]=\implies nullspace(A)=\begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}=\begin{bmatrix}x_1\\0\\-x_1 \end{bmatrix}=x1[101]=span({1,0,1})x_1\begin{bmatrix} 1\\0\\-1 \end{bmatrix}=span(\begin{Bmatrix} 1,0,-1\end{Bmatrix}) (from (ii) and (iii))


Thus, nullity(A)=dimension of null space(A)

=1 (Answer)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS