"Let A=\\begin{bmatrix}\n 1 & 0 & 1 \\\\\n 0 & 1 &0\\\\\n1&0&1\n\\end{bmatrix}" be the given matrix. Performing the operation "R_3 \\gets R_3-R_1" we get;
"A=\\begin{bmatrix}\n 1 & 0&1 \\\\\n 0 & 1&0\\\\\n0&0&0\n\\end{bmatrix}" Clearly, the largest sub matrix with non-zero determinant is of order "2\\Chi2" .
"\\implies rank(A)=2" (Answer)
Null space of a matrix A is x given by the equation "Ax=0"
"\\begin{bmatrix}\n 1 & 0&1 \\\\\n 0 & 1&0\\\\\n0&0&0\n\\end{bmatrix}.\\begin{bmatrix}\n x_1\\\\x_2\\\\x_3\n\\end{bmatrix}=\\begin{bmatrix}\n 0\\\\0\\\\0\\end{bmatrix}" "\\implies \\begin{bmatrix}\n x_1+x_3 \\\\x_2\\\\0\n\\end{bmatrix}\n=\\begin{bmatrix}\n 0\\\\0\\\\0\\end{bmatrix}" -----(i)
Thus, null space(A) is given by; "x=\\begin{Bmatrix}\n x_1 & x_2&x_3 \n\\end{Bmatrix}" where "x_1,x_2,x_3" follow(using (i)):
"x_1+x_3=0\\implies x_3=-x_1" -----(ii)
"x_2=0" ------(iii)
"\\implies nullspace(A)=\\begin{bmatrix}\n x_1\\\\x_2\\\\x_3\n\\end{bmatrix}=\\begin{bmatrix}x_1\\\\0\\\\-x_1\n\\end{bmatrix}=""x_1\\begin{bmatrix}\n 1\\\\0\\\\-1\n\\end{bmatrix}=span(\\begin{Bmatrix}\n 1,0,-1\\end{Bmatrix})" (from (ii) and (iii))
Thus, nullity(A)=dimension of null space(A)
=1 (Answer)
Comments
Leave a comment