Question #101035
1. For purposes of this problem, let us define a "checkerboard matrix" to be a square matrix A = [aij] such that

a Subscript i j Baseline equals Start Layout left-brace 1st Row 1st Column 1 if i+j is even 2nd Row 1st Column 0 if i+j is odd End Layout

Find the rank and nullity of the following checkerboard matrix.

The 6 × 6 checkerboard matrix.

a. Rank (A) =
b. nullity (A) =

2. For purposes of this problem, let us define a "checkerboard matrix" to be a square matrix Upper A equals left-bracket a Subscript i j Baseline right-bracket such that

a Subscript i j Baseline equals Star tLayout left-brace 1st Row 1st Column -2 if i plus j is even 2nd Row 1st Column 0 if i plus j is odd End Layout

Find the rank and nullity of the n times n checkerboard matrix for n greater-than-or-equal-to 2.

a. Rank (A) =
b. nullity (A) =
1
Expert's answer
2020-01-16T11:30:09-0500

1. A=[101010010101101010010101101010010101]A=\begin{bmatrix} 1&0&1&0&1&0\\ 0&1&0&1&0&1\\ 1&0&1&0&1&0\\ 0&1&0&1&0&1\\ 1&0&1&0&1&0\\ 0&1&0&1&0&1 \end{bmatrix} is the 6x6 checkerboards matrix.

Applying R6R6R2R_6 \gets R_6-R_2 ; R4R4R2R_4 \gets R_4-R_2 ; R5R5R1R_5 \gets R_5-R_1 and R3R3R1R_3 \gets R_3-R_1 ; we get;

A=[101010010101000000000000000000000000]A=\begin{bmatrix} 1&0&1&0&1&0\\ 0&1&0&1&0&1\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0 \end{bmatrix} . Clearly, rank(A)=2.

Nullity is given by; Ax=0; where x represents Null Space of A.

[101010010101000000000000000000000000][x1x2x3x4x5x6]=[000000]\begin{bmatrix} 1&0&1&0&1&0\\ 0&1&0&1&0&1\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0 \end{bmatrix}\begin{bmatrix} x_1 \\x_2\\x_3\\x_4\\x_5\\x_6 \end{bmatrix} =\begin{bmatrix} 0 \\0\\0\\0\\0\\0 \end{bmatrix}

    x1+x3+x5=0;    x1=x3x5;\implies x_1+x_3+x_5=0;\implies x_1=-x_3-x_5;

    x2+x4+x6=0;    x2=x4x6\implies x_2+x_4+x_6=0;\implies x_2=-x_4-x_6

[x1x2x3x4x5x6]=[x3x5x4x6x3x4x5x6]\begin{bmatrix} x_1 \\x_2\\x_3\\x_4\\x_5\\x_6 \end{bmatrix}=\begin{bmatrix} -x_3-x_5\\-x_4-x_6\\x_3\\x_4\\x_5\\x_6 \end{bmatrix} . Thus, 4 independent parameters, x3,x4,x5,x6    Nullity(A)=4x_3,x_4,x_5,x_6\implies Nullity(A)=4



2.A=[202020020202202020020202202020020202]A=\begin{bmatrix} -2&0&-2&0&-2&0\\ 0&-2&0&-2&0&-2\\ -2&0&-2&0&-2&0\\ 0&-2&0&-2&0&-2\\ -2&0&-2&0&-2&0\\ 0&-2&0&-2&0&-2 \end{bmatrix} is the checkerboard matrix (for n=6).

Applying R6R6R2;R4R4R2;R5R5R1andR3R3R1R_6 \gets R_6-R_2; R_4 \gets R_4-R_2; R_5 \gets R_5-R_1and R_3 \gets R_3-R_1 we get;

A=[202020020202000000000000000000000000]A=\begin{bmatrix} -2&0&-2&0&-2&0\\ 0&-2&0&-2&0&-2\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&0 \end{bmatrix} Clearly, rank(A)=2. Moreover this applies to all matrices A for n>2. As we can perform the same row transformations again and again.


    Rank(A)=2\implies Rank(A)=2

Similarly;Nullity(A)=4Nullity(A)=4




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS