1. "A=\\begin{bmatrix}\n 1&0&1&0&1&0\\\\\n 0&1&0&1&0&1\\\\\n1&0&1&0&1&0\\\\\n0&1&0&1&0&1\\\\\n1&0&1&0&1&0\\\\\n0&1&0&1&0&1\n\\end{bmatrix}" is the 6x6 checkerboards matrix.
Applying "R_6 \\gets R_6-R_2" ; "R_4 \\gets R_4-R_2" ; "R_5 \\gets R_5-R_1" and "R_3 \\gets R_3-R_1" ; we get;
"A=\\begin{bmatrix}\n 1&0&1&0&1&0\\\\\n 0&1&0&1&0&1\\\\\n0&0&0&0&0&0\\\\\n0&0&0&0&0&0\\\\\n0&0&0&0&0&0\\\\\n0&0&0&0&0&0\n\\end{bmatrix}" . Clearly, rank(A)=2.
Nullity is given by; Ax=0; where x represents Null Space of A.
"\\begin{bmatrix}\n 1&0&1&0&1&0\\\\\n 0&1&0&1&0&1\\\\\n0&0&0&0&0&0\\\\\n0&0&0&0&0&0\\\\\n0&0&0&0&0&0\\\\\n0&0&0&0&0&0\n\\end{bmatrix}\\begin{bmatrix}\n x_1 \\\\x_2\\\\x_3\\\\x_4\\\\x_5\\\\x_6\n\\end{bmatrix}\n=\\begin{bmatrix}\n 0 \\\\0\\\\0\\\\0\\\\0\\\\0\n\\end{bmatrix}"
"\\implies x_1+x_3+x_5=0;\\implies x_1=-x_3-x_5;"
"\\implies x_2+x_4+x_6=0;\\implies x_2=-x_4-x_6"
"\\begin{bmatrix}\n x_1 \\\\x_2\\\\x_3\\\\x_4\\\\x_5\\\\x_6\n\\end{bmatrix}=\\begin{bmatrix}\n -x_3-x_5\\\\-x_4-x_6\\\\x_3\\\\x_4\\\\x_5\\\\x_6\n\\end{bmatrix}" . Thus, 4 independent parameters, "x_3,x_4,x_5,x_6\\implies Nullity(A)=4"
2."A=\\begin{bmatrix}\n -2&0&-2&0&-2&0\\\\\n 0&-2&0&-2&0&-2\\\\\n-2&0&-2&0&-2&0\\\\\n0&-2&0&-2&0&-2\\\\\n-2&0&-2&0&-2&0\\\\\n0&-2&0&-2&0&-2\n\\end{bmatrix}" is the checkerboard matrix (for n=6).
Applying "R_6 \\gets R_6-R_2; R_4 \\gets R_4-R_2; R_5 \\gets R_5-R_1and R_3 \\gets R_3-R_1" we get;
"A=\\begin{bmatrix}\n -2&0&-2&0&-2&0\\\\\n 0&-2&0&-2&0&-2\\\\\n0&0&0&0&0&0\\\\\n0&0&0&0&0&0\\\\\n0&0&0&0&0&0\\\\\n0&0&0&0&0&0\n\\end{bmatrix}" Clearly, rank(A)=2. Moreover this applies to all matrices A for n>2. As we can perform the same row transformations again and again.
"\\implies Rank(A)=2"
Similarly;"Nullity(A)=4"
Comments
Leave a comment