1.
( 1 − 4 ∣ b 1 1 − 3 ∣ b 2 1 1 ∣ b 3 1 − 5 ∣ b 4 1 6 ∣ b 5 ) \begin{pmatrix}
1 & -4& \ |& b_1 \\
1 & -3 & \ |& b_2 \\
1 & 1 & \ |& b_3 \\
1 & -5 & \ |& b_4 \\
1 & 6 & \ |& b_5
\end{pmatrix} ⎝ ⎛ 1 1 1 1 1 − 4 − 3 1 − 5 6 ∣ ∣ ∣ ∣ ∣ b 1 b 2 b 3 b 4 b 5 ⎠ ⎞ R 2 = R 2 − R 1 R_2=R_2-R_1 R 2 = R 2 − R 1
( 1 − 4 ∣ b 1 0 1 ∣ − b 1 + b 2 1 1 ∣ b 3 1 − 5 ∣ b 4 1 6 ∣ b 5 ) \begin{pmatrix}
1 & -4& \ |& b_1 \\
0 & 1 & \ |& -b_1+b_2 \\
1 & 1 & \ |& b_3 \\
1 & -5 & \ |& b_4 \\
1 & 6 & \ |& b_5
\end{pmatrix} ⎝ ⎛ 1 0 1 1 1 − 4 1 1 − 5 6 ∣ ∣ ∣ ∣ ∣ b 1 − b 1 + b 2 b 3 b 4 b 5 ⎠ ⎞ R 3 = R 3 − R 1 R_3=R_3-R_1 R 3 = R 3 − R 1
( 1 − 4 ∣ b 1 0 1 ∣ − b 1 + b 2 0 5 ∣ − b 1 + b 3 1 − 5 ∣ b 4 1 6 ∣ b 5 ) \begin{pmatrix}
1 & -4& \ |& b_1 \\
0 & 1 & \ |& -b_1+b_2 \\
0 & 5 & \ |& -b_1+b_3 \\
1 & -5 & \ |& b_4 \\
1 & 6 & \ |& b_5
\end{pmatrix} ⎝ ⎛ 1 0 0 1 1 − 4 1 5 − 5 6 ∣ ∣ ∣ ∣ ∣ b 1 − b 1 + b 2 − b 1 + b 3 b 4 b 5 ⎠ ⎞ R 4 = R 4 − R 1 R_4=R_4-R_1 R 4 = R 4 − R 1
( 1 − 4 ∣ b 1 0 1 ∣ − b 1 + b 2 0 5 ∣ − b 1 + b 3 0 − 1 ∣ − b 1 + b 4 1 6 ∣ b 5 ) \begin{pmatrix}
1 & -4& \ |& b_1 \\
0 & 1 & \ |& -b_1+b_2 \\
0 & 5 & \ |& -b_1+b_3 \\
0 & -1& \ |& -b_1+b_4 \\
1 & 6 & \ |& b_5
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 − 4 1 5 − 1 6 ∣ ∣ ∣ ∣ ∣ b 1 − b 1 + b 2 − b 1 + b 3 − b 1 + b 4 b 5 ⎠ ⎞ R 5 = R 5 − R 1 R_5=R_5-R_1 R 5 = R 5 − R 1
( 1 − 4 ∣ b 1 0 1 ∣ − b 1 + b 2 0 5 ∣ − b 1 + b 3 0 − 1 ∣ − b 1 + b 4 0 10 ∣ − b 1 + b 5 ) \begin{pmatrix}
1 & -4& \ |& b_1 \\
0 & 1 & \ |& -b_1+b_2 \\
0 & 5 & \ |& -b_1+b_3 \\
0 & -1& \ |& -b_1+b_4 \\
0 & 10 & \ |& -b_1+b_5
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 − 4 1 5 − 1 10 ∣ ∣ ∣ ∣ ∣ b 1 − b 1 + b 2 − b 1 + b 3 − b 1 + b 4 − b 1 + b 5 ⎠ ⎞ R 1 = R 1 + ( 4 ) R 2 R_1=R_1+(4)R_2 R 1 = R 1 + ( 4 ) R 2
( 1 0 ∣ − 3 b 1 + 4 b 2 0 1 ∣ − b 1 + b 2 0 5 ∣ − b 1 + b 3 0 − 1 ∣ − b 1 + b 4 0 10 ∣ − b 1 + b 5 ) \begin{pmatrix}
1 & 0 & \ |& -3b_1+4b_2 \\
0 & 1 & \ |& -b_1+b_2 \\
0 & 5 & \ |& -b_1+b_3 \\
0 & -1& \ |& -b_1+b_4 \\
0 & 10 & \ |& -b_1+b_5
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 1 5 − 1 10 ∣ ∣ ∣ ∣ ∣ − 3 b 1 + 4 b 2 − b 1 + b 2 − b 1 + b 3 − b 1 + b 4 − b 1 + b 5 ⎠ ⎞ R 3 = R 3 − ( 5 ) R 2 R_3=R_3-(5)R_2 R 3 = R 3 − ( 5 ) R 2
( 1 0 ∣ − 3 b 1 + 4 b 2 0 1 ∣ − b 1 + b 2 0 0 ∣ 4 b 1 − 5 b 2 + b 3 0 − 1 ∣ − b 1 + b 4 0 10 ∣ − b 1 + b 5 ) \begin{pmatrix}
1 & 0 & \ |& -3b_1+4b_2 \\
0 & 1 & \ |& -b_1+b_2 \\
0 & 0 & \ |& 4b_1-5b_2+b_3 \\
0 & -1& \ |& -b_1+b_4 \\
0 & 10 & \ |& -b_1+b_5
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 1 0 − 1 10 ∣ ∣ ∣ ∣ ∣ − 3 b 1 + 4 b 2 − b 1 + b 2 4 b 1 − 5 b 2 + b 3 − b 1 + b 4 − b 1 + b 5 ⎠ ⎞ R 4 = R 4 + R 2 R_4=R_4+R_2 R 4 = R 4 + R 2
( 1 0 ∣ − 3 b 1 + 4 b 2 0 1 ∣ − b 1 + b 2 0 0 ∣ 4 b 1 − 5 b 2 + b 3 0 0 ∣ − 2 b 1 + b 2 + b 4 0 10 ∣ − b 1 + b 5 ) \begin{pmatrix}
1 & 0 & \ |& -3b_1+4b_2 \\
0 & 1 & \ |& -b_1+b_2 \\
0 & 0 & \ |& 4b_1-5b_2+b_3 \\
0 & 0 & \ |& -2b_1+b_2+b_4 \\
0 & 10 & \ |& -b_1+b_5
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 1 0 0 10 ∣ ∣ ∣ ∣ ∣ − 3 b 1 + 4 b 2 − b 1 + b 2 4 b 1 − 5 b 2 + b 3 − 2 b 1 + b 2 + b 4 − b 1 + b 5 ⎠ ⎞ R 5 = R 5 − ( 10 ) R 2 R_5=R_5-(10)R_2 R 5 = R 5 − ( 10 ) R 2
( 1 0 ∣ − 3 b 1 + 4 b 2 0 1 ∣ − b 1 + b 2 0 0 ∣ 4 b 1 − 5 b 2 + b 3 0 0 ∣ − 2 b 1 + b 2 + b 4 0 0 ∣ 9 b 1 − 10 b 2 + b 5 ) \begin{pmatrix}
1 & 0 & \ |& -3b_1+4b_2 \\
0 & 1 & \ |& -b_1+b_2 \\
0 & 0 & \ |& 4b_1-5b_2+b_3 \\
0 & 0 & \ |& -2b_1+b_2+b_4 \\
0 & 0 & \ |& 9b_1-10b_2+b_5
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 1 0 0 0 ∣ ∣ ∣ ∣ ∣ − 3 b 1 + 4 b 2 − b 1 + b 2 4 b 1 − 5 b 2 + b 3 − 2 b 1 + b 2 + b 4 9 b 1 − 10 b 2 + b 5 ⎠ ⎞
4 b 1 − 5 b 2 + b 3 = 0 4b_1-5b_2+b_3=0 4 b 1 − 5 b 2 + b 3 = 0 − 2 b 1 + b 2 + b 4 = 0 -2b_1+b_2+b_4=0 − 2 b 1 + b 2 + b 4 = 0 9 b 1 − 10 b 2 + b 5 = 0 9b_1-10b_2+b_5=0 9 b 1 − 10 b 2 + b 5 = 0 Let b 4 = r , b 5 = s . b_4=r, b_5=s. b 4 = r , b 5 = s . Then
4 b 1 − 5 b 2 + b 3 = 0 4b_1-5b_2+b_3=0 4 b 1 − 5 b 2 + b 3 = 0 − 2 b 1 + b 2 + r = 0 -2b_1+b_2+r=0 − 2 b 1 + b 2 + r = 0 9 b 1 − 10 b 2 + s = 0 9b_1-10b_2+s=0 9 b 1 − 10 b 2 + s = 0
b 3 = − 4 b 1 + 5 b 2 b_3=-4b_1+5b_2 b 3 = − 4 b 1 + 5 b 2 b 2 = 2 b 1 − r b_2=2b_1-r b 2 = 2 b 1 − r − 11 b 1 + 10 r + s = 0 -11b_1+10r+s=0 − 11 b 1 + 10 r + s = 0
b 1 = 10 11 r + 1 11 s , b_1={10 \over 11}r+{1 \over 11}s , b 1 = 11 10 r + 11 1 s , b 2 = 9 11 r + 2 11 s , b_2={9 \over 11}r+{2 \over 11}s , b 2 = 11 9 r + 11 2 s , b 3 = 5 11 r + 6 11 s , b_3={5 \over 11}r+{6 \over 11}s , b 3 = 11 5 r + 11 6 s , b 4 = r , b_4=r , b 4 = r , b 5 = s , b_5=s , b 5 = s , r , s ∈ R r,s\in \Bbb{R} r , s ∈ R
2.
A = ( 3 − 2 − 5 7 − 29 − 2 0 2 − 6 14 4 7 3 19 0 ) A=\begin{pmatrix}
3 & -2 & -5 & 7 & -29 \\
-2 & 0 & 2 & -6 & 14 \\
4 & 7 & 3 & 19 & 0 \\
\end{pmatrix} A = ⎝ ⎛ 3 − 2 4 − 2 0 7 − 5 2 3 7 − 6 19 − 29 14 0 ⎠ ⎞ a)
R 1 = R 1 / 3 R_1=R_1/3 R 1 = R 1 /3
( 1 − 2 / 3 − 5 / 3 7 / 3 − 29 / 3 − 2 0 2 − 6 14 4 7 3 19 0 ) \begin{pmatrix}
1 & -2/3 & -5/3 & 7/3 & -29/3 \\
-2 & 0 & 2 & -6 & 14 \\
4 & 7 & 3 & 19 & 0 \\
\end{pmatrix} ⎝ ⎛ 1 − 2 4 − 2/3 0 7 − 5/3 2 3 7/3 − 6 19 − 29/3 14 0 ⎠ ⎞ R 2 = R 2 + ( 2 ) R 1 R_2=R_2+(2)R_1 R 2 = R 2 + ( 2 ) R 1
( 1 − 2 / 3 − 5 / 3 7 / 3 − 29 / 3 0 − 4 / 3 − 4 / 3 − 4 / 3 − 16 / 3 4 7 3 19 0 ) \begin{pmatrix}
1 & -2/3 & -5/3 & 7/3 & -29/3 \\
0 & -4/3 & -4/3 & -4/3 & -16/3 \\
4 & 7 & 3 & 19 & 0 \\
\end{pmatrix} ⎝ ⎛ 1 0 4 − 2/3 − 4/3 7 − 5/3 − 4/3 3 7/3 − 4/3 19 − 29/3 − 16/3 0 ⎠ ⎞
R 3 = R 3 − ( 4 ) R 1 R_3=R_3-(4)R_1 R 3 = R 3 − ( 4 ) R 1
( 1 − 2 / 3 − 5 / 3 7 / 3 − 29 / 3 0 − 4 / 3 − 4 / 3 − 4 / 3 − 16 / 3 0 29 / 3 29 / 3 29 / 3 116 / 3 ) \begin{pmatrix}
1 & -2/3 & -5/3 & 7/3 & -29/3 \\
0 & -4/3 & -4/3 & -4/3 & -16/3 \\
0 & 29/3 & 29/3 & 29/3 & 116/3 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 − 2/3 − 4/3 29/3 − 5/3 − 4/3 29/3 7/3 − 4/3 29/3 − 29/3 − 16/3 116/3 ⎠ ⎞ R 2 = ( − 3 4 ) R 2 R_2=(-{3 \over 4})R_2 R 2 = ( − 4 3 ) R 2
( 1 − 2 / 3 − 5 / 3 7 / 3 − 29 / 3 0 1 1 1 4 0 29 / 3 29 / 3 29 / 3 116 / 3 ) \begin{pmatrix}
1 & -2/3 & -5/3 & 7/3 & -29/3 \\
0 & 1 & 1 & 1 & 4 \\
0 & 29/3 & 29/3 & 29/3 & 116/3 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 − 2/3 1 29/3 − 5/3 1 29/3 7/3 1 29/3 − 29/3 4 116/3 ⎠ ⎞ R 1 = R 1 + ( 2 3 ) R 2 R_1=R_1+({2 \over 3})R_2 R 1 = R 1 + ( 3 2 ) R 2
( 1 0 − 1 3 − 7 0 1 1 1 4 0 29 / 3 29 / 3 29 / 3 116 / 3 ) \begin{pmatrix}
1 & 0 & -1 & 3 & -7 \\
0 & 1 & 1 & 1 & 4 \\
0 & 29/3 & 29/3 & 29/3 & 116/3 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 29/3 − 1 1 29/3 3 1 29/3 − 7 4 116/3 ⎠ ⎞ R 3 = R 3 − ( 29 3 ) R 2 R_3=R_3-({29 \over 3})R_2 R 3 = R 3 − ( 3 29 ) R 2
( 1 0 − 1 3 − 7 0 1 1 1 4 0 0 0 0 0 ) \begin{pmatrix}
1 & 0 & -1 & 3 & -7 \\
0 & 1 & 1 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 \\
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 1 1 0 3 1 0 − 7 4 0 ⎠ ⎞ The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.
r a n k ( A ) = 2 rank(A)=2 r ank ( A ) = 2 b)
Solve the matrix equation
( 1 0 − 1 3 − 7 0 1 1 1 4 0 0 0 0 0 ) ( x 1 x 2 x 3 x 4 x 5 ) = ( 0 0 0 ) \begin{pmatrix}
1 & 0 & -1 & 3 & -7 \\
0 & 1 & 1 & 1 & 4 \\
0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{pmatrix}=
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 − 1 1 0 3 1 0 − 7 4 0 ⎠ ⎞ ⎝ ⎛ x 1 x 2 x 3 x 4 x 5 ⎠ ⎞ = ⎝ ⎛ 0 0 0 ⎠ ⎞ If we take x 3 = t , x 4 = s , x 5 = u , x_3=t, x_4=s, x_5=u, x 3 = t , x 4 = s , x 5 = u , then x 1 = t − 3 s + 7 u , x 2 = − t − s − 4 u , x_1=t-3s+7u, x_2=-t-s-4u, x 1 = t − 3 s + 7 u , x 2 = − t − s − 4 u ,
x 3 = t , x 4 = s , x 5 = u . x_3=t,x_4=s,x_5=u. x 3 = t , x 4 = s , x 5 = u .
Therefore
X = ( t − 3 s + 7 u − t − s − 4 u t s u ) = X=\begin{pmatrix}
t-3s+7u \\
-t-s-4u \\
t \\
s \\
u
\end{pmatrix}= X = ⎝ ⎛ t − 3 s + 7 u − t − s − 4 u t s u ⎠ ⎞ = = ( 1 − 1 1 0 0 ) t + ( − 3 − 1 0 1 0 ) s + ( 7 − 4 0 0 1 ) u =
\begin{pmatrix}
1 \\
-1 \\
1 \\
0 \\
0
\end{pmatrix}t+
\begin{pmatrix}
-3 \\
-1 \\
0 \\
1 \\
0
\end{pmatrix}s+
\begin{pmatrix}
7 \\
-4 \\
0 \\
0 \\
1
\end{pmatrix}u = ⎝ ⎛ 1 − 1 1 0 0 ⎠ ⎞ t + ⎝ ⎛ − 3 − 1 0 1 0 ⎠ ⎞ s + ⎝ ⎛ 7 − 4 0 0 1 ⎠ ⎞ u This is a null space.
Thus the nullity of the matrix A is 3.
n u l l i t y ( A ) = 3 nullity(A)=3 n u ll i t y ( A ) = 3
c.
r a n k ( A ) + n u l l i t y ( A ) = 2 + 3 = 5 = n rank(A)+nullity(A)=2+3=5=n r ank ( A ) + n u ll i t y ( A ) = 2 + 3 = 5 = n A A A is a matrix with n = 5 n=5 n = 5 columns.
3.
A = ( 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ) A=\begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{pmatrix} A = ⎝ ⎛ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ⎠ ⎞ R 3 = R 3 − R 1 R_3=R_3-R_1 R 3 = R 3 − R 1
( 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ) \begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{pmatrix} ⎝ ⎛ 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 ⎠ ⎞ R 5 = R 5 − R 1 R_5=R_5-R_1 R 5 = R 5 − R 1
( 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ) \begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 ⎠ ⎞ R 7 = R 7 − R 1 R_7=R_7-R_1 R 7 = R 7 − R 1
( 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ) \begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 ⎠ ⎞ R 9 = R 9 − R 1 R_9=R_9-R_1 R 9 = R 9 − R 1
( 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 ) \begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 ⎠ ⎞ R 4 = R 4 − R 2 R_4=R_4-R_2 R 4 = R 4 − R 2
( 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 ) \begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 ⎠ ⎞ R 6 = R 6 − R 2 R_6=R_6-R_2 R 6 = R 6 − R 2
( 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 ) \begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 ⎠ ⎞ R 8 = R 8 − R 2 R_8=R_8-R_2 R 8 = R 8 − R 2
( 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) \begin{pmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} ⎝ ⎛ 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ⎠ ⎞
a.
The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.
r a n k ( A ) = 2 rank(A)=2 r ank ( A ) = 2
b.
r a n k ( A ) + n u l l i t y ( A ) = n rank(A)+nullity(A)=n r ank ( A ) + n u ll i t y ( A ) = n n = 9 n=9 n = 9
n u l l i t y ( A ) = 9 − 2 = 7 nullity(A)=9-2=7 n u ll i t y ( A ) = 9 − 2 = 7 n u l l i t y ( A ) = 7 nullity(A)=7 n u ll i t y ( A ) = 7
Comments