1.
"\\begin{pmatrix}\n 1 & -4& \\ |& b_1 \\\\\n 1 & -3 & \\ |& b_2 \\\\\n 1 & 1 & \\ |& b_3 \\\\\n 1 & -5 & \\ |& b_4 \\\\\n 1 & 6 & \\ |& b_5\n\\end{pmatrix}" "R_2=R_2-R_1"
"\\begin{pmatrix}\n 1 & -4& \\ |& b_1 \\\\\n 0 & 1 & \\ |& -b_1+b_2 \\\\\n 1 & 1 & \\ |& b_3 \\\\\n 1 & -5 & \\ |& b_4 \\\\\n 1 & 6 & \\ |& b_5\n\\end{pmatrix}" "R_3=R_3-R_1"
"\\begin{pmatrix}\n 1 & -4& \\ |& b_1 \\\\\n 0 & 1 & \\ |& -b_1+b_2 \\\\\n 0 & 5 & \\ |& -b_1+b_3 \\\\\n 1 & -5 & \\ |& b_4 \\\\\n 1 & 6 & \\ |& b_5\n\\end{pmatrix}" "R_4=R_4-R_1"
"\\begin{pmatrix}\n 1 & -4& \\ |& b_1 \\\\\n 0 & 1 & \\ |& -b_1+b_2 \\\\\n 0 & 5 & \\ |& -b_1+b_3 \\\\\n 0 & -1& \\ |& -b_1+b_4 \\\\\n 1 & 6 & \\ |& b_5\n\\end{pmatrix}" "R_5=R_5-R_1"
"\\begin{pmatrix}\n 1 & -4& \\ |& b_1 \\\\\n 0 & 1 & \\ |& -b_1+b_2 \\\\\n 0 & 5 & \\ |& -b_1+b_3 \\\\\n 0 & -1& \\ |& -b_1+b_4 \\\\\n 0 & 10 & \\ |& -b_1+b_5\n\\end{pmatrix}" "R_1=R_1+(4)R_2"
"\\begin{pmatrix}\n 1 & 0 & \\ |& -3b_1+4b_2 \\\\\n 0 & 1 & \\ |& -b_1+b_2 \\\\\n 0 & 5 & \\ |& -b_1+b_3 \\\\\n 0 & -1& \\ |& -b_1+b_4 \\\\\n 0 & 10 & \\ |& -b_1+b_5\n\\end{pmatrix}" "R_3=R_3-(5)R_2"
"\\begin{pmatrix}\n 1 & 0 & \\ |& -3b_1+4b_2 \\\\\n 0 & 1 & \\ |& -b_1+b_2 \\\\\n 0 & 0 & \\ |& 4b_1-5b_2+b_3 \\\\\n 0 & -1& \\ |& -b_1+b_4 \\\\\n 0 & 10 & \\ |& -b_1+b_5\n\\end{pmatrix}" "R_4=R_4+R_2"
"\\begin{pmatrix}\n 1 & 0 & \\ |& -3b_1+4b_2 \\\\\n 0 & 1 & \\ |& -b_1+b_2 \\\\\n 0 & 0 & \\ |& 4b_1-5b_2+b_3 \\\\\n 0 & 0 & \\ |& -2b_1+b_2+b_4 \\\\\n 0 & 10 & \\ |& -b_1+b_5\n\\end{pmatrix}" "R_5=R_5-(10)R_2"
"\\begin{pmatrix}\n 1 & 0 & \\ |& -3b_1+4b_2 \\\\\n 0 & 1 & \\ |& -b_1+b_2 \\\\\n 0 & 0 & \\ |& 4b_1-5b_2+b_3 \\\\\n 0 & 0 & \\ |& -2b_1+b_2+b_4 \\\\\n 0 & 0 & \\ |& 9b_1-10b_2+b_5\n\\end{pmatrix}"
"4b_1-5b_2+b_3=0""-2b_1+b_2+b_4=0""9b_1-10b_2+b_5=0" Let "b_4=r, b_5=s." Then
"4b_1-5b_2+b_3=0""-2b_1+b_2+r=0""9b_1-10b_2+s=0"
"b_3=-4b_1+5b_2""b_2=2b_1-r""-11b_1+10r+s=0"
"b_1={10 \\over 11}r+{1 \\over 11}s ,""b_2={9 \\over 11}r+{2 \\over 11}s ,""b_3={5 \\over 11}r+{6 \\over 11}s ,""b_4=r ,""b_5=s ," "r,s\\in \\Bbb{R}"
2.
"A=\\begin{pmatrix}\n 3 & -2 & -5 & 7 & -29 \\\\\n -2 & 0 & 2 & -6 & 14 \\\\\n 4 & 7 & 3 & 19 & 0 \\\\\n\\end{pmatrix}" a)
"R_1=R_1\/3"
"\\begin{pmatrix}\n 1 & -2\/3 & -5\/3 & 7\/3 & -29\/3 \\\\\n -2 & 0 & 2 & -6 & 14 \\\\\n 4 & 7 & 3 & 19 & 0 \\\\\n\\end{pmatrix}""R_2=R_2+(2)R_1"
"\\begin{pmatrix}\n 1 & -2\/3 & -5\/3 & 7\/3 & -29\/3 \\\\\n 0 & -4\/3 & -4\/3 & -4\/3 & -16\/3 \\\\\n 4 & 7 & 3 & 19 & 0 \\\\\n\\end{pmatrix}"
"R_3=R_3-(4)R_1"
"\\begin{pmatrix}\n 1 & -2\/3 & -5\/3 & 7\/3 & -29\/3 \\\\\n 0 & -4\/3 & -4\/3 & -4\/3 & -16\/3 \\\\\n 0 & 29\/3 & 29\/3 & 29\/3 & 116\/3 \\\\\n\\end{pmatrix}" "R_2=(-{3 \\over 4})R_2"
"\\begin{pmatrix}\n 1 & -2\/3 & -5\/3 & 7\/3 & -29\/3 \\\\\n 0 & 1 & 1 & 1 & 4 \\\\\n 0 & 29\/3 & 29\/3 & 29\/3 & 116\/3 \\\\\n\\end{pmatrix}""R_1=R_1+({2 \\over 3})R_2"
"\\begin{pmatrix}\n 1 & 0 & -1 & 3 & -7 \\\\\n 0 & 1 & 1 & 1 & 4 \\\\\n 0 & 29\/3 & 29\/3 & 29\/3 & 116\/3 \\\\\n\\end{pmatrix}" "R_3=R_3-({29 \\over 3})R_2"
"\\begin{pmatrix}\n 1 & 0 & -1 & 3 & -7 \\\\\n 0 & 1 & 1 & 1 & 4 \\\\\n 0 & 0 & 0 & 0 & 0 \\\\\n\\end{pmatrix}" The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.
"rank(A)=2" b)
Solve the matrix equation
"\\begin{pmatrix}\n 1 & 0 & -1 & 3 & -7 \\\\\n 0 & 1 & 1 & 1 & 4 \\\\\n 0 & 0 & 0 & 0 & 0 \\\\\n\\end{pmatrix}\n\\begin{pmatrix}\n x_1 \\\\\n x_2 \\\\\n x_3 \\\\\n x_4 \\\\\n x_5 \n\\end{pmatrix}=\n\\begin{pmatrix}\n 0 \\\\\n 0 \\\\\n 0 \n\\end{pmatrix}" If we take "x_3=t, x_4=s, x_5=u," then "x_1=t-3s+7u, x_2=-t-s-4u,"
"x_3=t,x_4=s,x_5=u."
Therefore
"X=\\begin{pmatrix}\n t-3s+7u \\\\\n -t-s-4u \\\\\n t \\\\\n s \\\\\n u\n\\end{pmatrix}=""=\n\\begin{pmatrix}\n 1 \\\\\n -1 \\\\\n 1 \\\\\n 0 \\\\\n 0 \n\\end{pmatrix}t+\n\\begin{pmatrix}\n -3 \\\\\n -1 \\\\\n 0 \\\\\n 1 \\\\\n 0\n\\end{pmatrix}s+\n\\begin{pmatrix}\n 7 \\\\\n -4 \\\\\n 0 \\\\\n 0 \\\\\n 1 \n\\end{pmatrix}u" This is a null space.
Thus the nullity of the matrix A is 3.
"nullity(A)=3"
c.
"rank(A)+nullity(A)=2+3=5=n" "A" is a matrix with "n=5" columns.
3.
"A=\\begin{pmatrix}\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\\\\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\n\\end{pmatrix}" "R_3=R_3-R_1"
"\\begin{pmatrix}\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\\\\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\n\\end{pmatrix}" "R_5=R_5-R_1"
"\\begin{pmatrix}\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\\\\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\n\\end{pmatrix}" "R_7=R_7-R_1"
"\\begin{pmatrix}\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\\\\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\n\\end{pmatrix}" "R_9=R_9-R_1"
"\\begin{pmatrix}\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\n\\end{pmatrix}" "R_4=R_4-R_2"
"\\begin{pmatrix}\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\n\\end{pmatrix}" "R_6=R_6-R_2"
"\\begin{pmatrix}\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\n\\end{pmatrix}" "R_8=R_8-R_2"
"\\begin{pmatrix}\n 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\\\\n 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\n\\end{pmatrix}"
a.
The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.
"rank(A)=2"
b.
"rank(A)+nullity(A)=n" "n=9"
"nullity(A)=9-2=7" "nullity(A)=7"
Comments
Leave a comment