Question #101034
1. What conditions must be satisfied by b1, b2, b3, b4, and b5 for the over determined linear system to be consistent?

x1 - 4x2 = b1
x1 - 3x2 = b2
x1 + x2 = b3
x1 - 5x2 = b4
x1 + 6x2 = b5

2. Find the rank and nullity of the matrix; then verify that the values obtained satisfy Formula (4) in the Dimension Theorem.

A = 3 -2 -5 7 -29
-2 0 2 -6 14
4 7 3 19 0

a. Rank (A) = ?
b. nullity (A) = ?
c. rank (A) + nullity (A) = ?

3. For purposes of this problem, let us define a "checkerboard matrix" to be a square matrix Upper A equals left-bracket a Subscript i j Baseline right-bracket such that

a Subscript i j Baseline equals Start Layout left-brace 1st Row 1st Column 1 if i plus j is even 2nd Row 1st Column 0 if i plus j is odd End Layout

Find the rank and nullity of the following checkerboard matrix.

The 9 times 9 checkerboard matrix.

a. rank (A) =
b. nullity (A) =
1
Expert's answer
2020-01-12T15:13:20-0500

1.


(14 b113 b211 b315 b416 b5)\begin{pmatrix} 1 & -4& \ |& b_1 \\ 1 & -3 & \ |& b_2 \\ 1 & 1 & \ |& b_3 \\ 1 & -5 & \ |& b_4 \\ 1 & 6 & \ |& b_5 \end{pmatrix}

R2=R2R1R_2=R_2-R_1


(14 b101 b1+b211 b315 b416 b5)\begin{pmatrix} 1 & -4& \ |& b_1 \\ 0 & 1 & \ |& -b_1+b_2 \\ 1 & 1 & \ |& b_3 \\ 1 & -5 & \ |& b_4 \\ 1 & 6 & \ |& b_5 \end{pmatrix}

R3=R3R1R_3=R_3-R_1


(14 b101 b1+b205 b1+b315 b416 b5)\begin{pmatrix} 1 & -4& \ |& b_1 \\ 0 & 1 & \ |& -b_1+b_2 \\ 0 & 5 & \ |& -b_1+b_3 \\ 1 & -5 & \ |& b_4 \\ 1 & 6 & \ |& b_5 \end{pmatrix}

R4=R4R1R_4=R_4-R_1


(14 b101 b1+b205 b1+b301 b1+b416 b5)\begin{pmatrix} 1 & -4& \ |& b_1 \\ 0 & 1 & \ |& -b_1+b_2 \\ 0 & 5 & \ |& -b_1+b_3 \\ 0 & -1& \ |& -b_1+b_4 \\ 1 & 6 & \ |& b_5 \end{pmatrix}

R5=R5R1R_5=R_5-R_1


(14 b101 b1+b205 b1+b301 b1+b4010 b1+b5)\begin{pmatrix} 1 & -4& \ |& b_1 \\ 0 & 1 & \ |& -b_1+b_2 \\ 0 & 5 & \ |& -b_1+b_3 \\ 0 & -1& \ |& -b_1+b_4 \\ 0 & 10 & \ |& -b_1+b_5 \end{pmatrix}

R1=R1+(4)R2R_1=R_1+(4)R_2


(10 3b1+4b201 b1+b205 b1+b301 b1+b4010 b1+b5)\begin{pmatrix} 1 & 0 & \ |& -3b_1+4b_2 \\ 0 & 1 & \ |& -b_1+b_2 \\ 0 & 5 & \ |& -b_1+b_3 \\ 0 & -1& \ |& -b_1+b_4 \\ 0 & 10 & \ |& -b_1+b_5 \end{pmatrix}

R3=R3(5)R2R_3=R_3-(5)R_2


(10 3b1+4b201 b1+b200 4b15b2+b301 b1+b4010 b1+b5)\begin{pmatrix} 1 & 0 & \ |& -3b_1+4b_2 \\ 0 & 1 & \ |& -b_1+b_2 \\ 0 & 0 & \ |& 4b_1-5b_2+b_3 \\ 0 & -1& \ |& -b_1+b_4 \\ 0 & 10 & \ |& -b_1+b_5 \end{pmatrix}

R4=R4+R2R_4=R_4+R_2


(10 3b1+4b201 b1+b200 4b15b2+b300 2b1+b2+b4010 b1+b5)\begin{pmatrix} 1 & 0 & \ |& -3b_1+4b_2 \\ 0 & 1 & \ |& -b_1+b_2 \\ 0 & 0 & \ |& 4b_1-5b_2+b_3 \\ 0 & 0 & \ |& -2b_1+b_2+b_4 \\ 0 & 10 & \ |& -b_1+b_5 \end{pmatrix}

R5=R5(10)R2R_5=R_5-(10)R_2


(10 3b1+4b201 b1+b200 4b15b2+b300 2b1+b2+b400 9b110b2+b5)\begin{pmatrix} 1 & 0 & \ |& -3b_1+4b_2 \\ 0 & 1 & \ |& -b_1+b_2 \\ 0 & 0 & \ |& 4b_1-5b_2+b_3 \\ 0 & 0 & \ |& -2b_1+b_2+b_4 \\ 0 & 0 & \ |& 9b_1-10b_2+b_5 \end{pmatrix}

4b15b2+b3=04b_1-5b_2+b_3=02b1+b2+b4=0-2b_1+b_2+b_4=09b110b2+b5=09b_1-10b_2+b_5=0

Let b4=r,b5=s.b_4=r, b_5=s. Then


4b15b2+b3=04b_1-5b_2+b_3=02b1+b2+r=0-2b_1+b_2+r=09b110b2+s=09b_1-10b_2+s=0

b3=4b1+5b2b_3=-4b_1+5b_2b2=2b1rb_2=2b_1-r11b1+10r+s=0-11b_1+10r+s=0

b1=1011r+111s,b_1={10 \over 11}r+{1 \over 11}s ,b2=911r+211s,b_2={9 \over 11}r+{2 \over 11}s ,b3=511r+611s,b_3={5 \over 11}r+{6 \over 11}s ,b4=r,b_4=r ,b5=s,b_5=s ,

r,sRr,s\in \Bbb{R}


2.


A=(325729202614473190)A=\begin{pmatrix} 3 & -2 & -5 & 7 & -29 \\ -2 & 0 & 2 & -6 & 14 \\ 4 & 7 & 3 & 19 & 0 \\ \end{pmatrix}

a)

R1=R1/3R_1=R_1/3


(12/35/37/329/3202614473190)\begin{pmatrix} 1 & -2/3 & -5/3 & 7/3 & -29/3 \\ -2 & 0 & 2 & -6 & 14 \\ 4 & 7 & 3 & 19 & 0 \\ \end{pmatrix}

R2=R2+(2)R1R_2=R_2+(2)R_1


(12/35/37/329/304/34/34/316/3473190)\begin{pmatrix} 1 & -2/3 & -5/3 & 7/3 & -29/3 \\ 0 & -4/3 & -4/3 & -4/3 & -16/3 \\ 4 & 7 & 3 & 19 & 0 \\ \end{pmatrix}


R3=R3(4)R1R_3=R_3-(4)R_1


(12/35/37/329/304/34/34/316/3029/329/329/3116/3)\begin{pmatrix} 1 & -2/3 & -5/3 & 7/3 & -29/3 \\ 0 & -4/3 & -4/3 & -4/3 & -16/3 \\ 0 & 29/3 & 29/3 & 29/3 & 116/3 \\ \end{pmatrix}

R2=(34)R2R_2=(-{3 \over 4})R_2


(12/35/37/329/301114029/329/329/3116/3)\begin{pmatrix} 1 & -2/3 & -5/3 & 7/3 & -29/3 \\ 0 & 1 & 1 & 1 & 4 \\ 0 & 29/3 & 29/3 & 29/3 & 116/3 \\ \end{pmatrix}

R1=R1+(23)R2R_1=R_1+({2 \over 3})R_2


(1013701114029/329/329/3116/3)\begin{pmatrix} 1 & 0 & -1 & 3 & -7 \\ 0 & 1 & 1 & 1 & 4 \\ 0 & 29/3 & 29/3 & 29/3 & 116/3 \\ \end{pmatrix}

R3=R3(293)R2R_3=R_3-({29 \over 3})R_2


(101370111400000)\begin{pmatrix} 1 & 0 & -1 & 3 & -7 \\ 0 & 1 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ \end{pmatrix}

The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.


rank(A)=2rank(A)=2

b)

Solve the matrix equation


(101370111400000)(x1x2x3x4x5)=(000)\begin{pmatrix} 1 & 0 & -1 & 3 & -7 \\ 0 & 1 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}

If we take x3=t,x4=s,x5=u,x_3=t, x_4=s, x_5=u, then x1=t3s+7u,x2=ts4u,x_1=t-3s+7u, x_2=-t-s-4u,

x3=t,x4=s,x5=u.x_3=t,x_4=s,x_5=u.

Therefore


X=(t3s+7uts4utsu)=X=\begin{pmatrix} t-3s+7u \\ -t-s-4u \\ t \\ s \\ u \end{pmatrix}==(11100)t+(31010)s+(74001)u= \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}t+ \begin{pmatrix} -3 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}s+ \begin{pmatrix} 7 \\ -4 \\ 0 \\ 0 \\ 1 \end{pmatrix}u

This is a null space.

Thus the nullity of the matrix A is 3.


nullity(A)=3nullity(A)=3

c.


rank(A)+nullity(A)=2+3=5=nrank(A)+nullity(A)=2+3=5=n

AA is a matrix with n=5n=5 columns.


3.


A=(101010101010101010101010101010101010101010101010101010101010101010101010101010101)A=\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}

R3=R3R1R_3=R_3-R_1


(101010101010101010000000000010101010101010101010101010101010101010101010101010101)\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}

R5=R5R1R_5=R_5-R_1


(101010101010101010000000000010101010000000000010101010101010101010101010101010101)\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}

R7=R7R1R_7=R_7-R_1


(101010101010101010000000000010101010000000000010101010000000000010101010101010101)\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}

R9=R9R1R_9=R_9-R_1


(101010101010101010000000000010101010000000000010101010000000000010101010000000000)\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}

R4=R4R2R_4=R_4-R_2


(101010101010101010000000000000000000000000000010101010000000000010101010000000000)\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}

R6=R6R2R_6=R_6-R_2


(101010101010101010000000000000000000000000000000000000000000000010101010000000000)\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}

R8=R8R2R_8=R_8-R_2


(101010101010101010000000000000000000000000000000000000000000000000000000000000000)\begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}


a.

The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.

rank(A)=2rank(A)=2


b.


rank(A)+nullity(A)=nrank(A)+nullity(A)=n

n=9n=9


nullity(A)=92=7nullity(A)=9-2=7

nullity(A)=7nullity(A)=7



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS