1.As the set { "v_1,v_2,v_3" } span a subspace of "R^{4}"
then, "c_1v_1+c_2v_2+c_3v_3=0"
"c_1(1,1,-5,-6)+c_2(2,0,2,-2)+c_3(3,-1,0,8)=0"
We get following equations from above equation
"c_1+2c_2+3c_3=0"
"c_1-c_3=0"
"-5c_1+2c_2=0"
"-6c_1-2c_2+8c_3=0"
From the above equation we can easily conclude that "c_1=c_2=c_3=0"
So,{ "v_1,v_2,v_3" } are linearly independent.
Thus, the set is the basis for the subspace of R4.
2.As the set "v_1,v_2,v_3,v_4" span R4.
then,"c_1v_1+c_2v_2+c_3v_3+c_4v_4=0"
"c_1(1,0,1,1)+c_2(-4,4,-1,4)+c_3(2,4,5,10)+c_4(-10,4,-7,-2)=0"
We get equations:
"c_1\t-4 c_2\t +2 c_3\t-10 c_4\t=\t0"
"4 c_2\t +4 c_3\t +4 c_4\t=\t0"
"c_1\t-c_2\t +5 c_3\t-7 c_4\t=\t0"
"c_1\t +4 c_2\t +10 c_3\t-2 c_4\t=\t0"
Solving these equations we can easily get
"c_1\t=\t-6 c_3\t+6 c_4"
"c_2\t=\t-c_3\t-c_4"
"c_3\t=\tarbitrary"
"c_4\t=\tarbitrary"
{ "v_1,v_2" } span { "v_3,v_4" }
{"v_1,v_2" } spans a subspace of R4 and vectors are linearly independent.Thus,vectors serve as the basis of a subspace of R4.
3."c_1v_1+c_2v_2+c_3v_3+c_4v_4+c_5v_5=0"
"c_1(1,-1,5,2)+c_2(-2,3,1,0)+c_3(5,-6,14,6)+c_4(0,4,2,-3)+c_5(3,15,45,2)=0"
We get the following equations from the above equation.
"c_1\t-2 c_2\t +5 c_3\t+3 c_5\t=\t0"
"- c_1\t +3 c_2\t-6 c_3\t +4 c_4\t +15 c_5\t=\t0"
"5 c_1\t +c_2\t +14 c_3\t +2 c_4\t +45 c_5\t=\t0"
"2 c_1+6 c_3\t-3 c_4\t +2 c_5\t=\t0"
Solving these equations we can get:
"c_1\t=\t-3 c_3\t-7 c_5"
"c_2\t=c_3\t-2 c_5"
"c_3\t=\tarbitrary"
"c_4\t=\t-4 c_5"
"c_5\t=\tarbitrary"
{"v_1,v_2,v_4" } span {"v_3,v_5" }
{ "v_1,v_2,v_4" } span a subspace of R4 and vectors are linearly independent.Thus, vectors serve as the basis of a subspace of R4.
4."A=\\begin{bmatrix}\n 3 & 4 \\\\\n 6 & -9\n\\end{bmatrix}"
"B=\\begin{bmatrix}\n -1 \\\\\n 15\n\\end{bmatrix}"
"B=c_1\\begin{pmatrix}\n 3 \\\\\n 6\n\\end{pmatrix}+c_2\\begin{pmatrix}\n 4 \\\\\n -9\n\\end{pmatrix}"
"3c_1+4c_2=-1"
"6c_1-9c_2=15"
"c_1=1,c_2=-1"
Yes, B is in the column space of A as it can be expressed as a linear combination of column vectors of A.
Comments
Leave a comment