1)
a) A = ( 1 3 6 0 − 2 4 6 1 − 3 1 0 1 ) , x = ( x 1 x 2 x 3 x 4 ) A=\begin{pmatrix} 1&3&6&0 \\ -2&4&6&1 \\ -3&1&0&1 \end{pmatrix}, \; x=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} A = ⎝ ⎛ 1 − 2 − 3 3 4 1 6 6 0 0 1 1 ⎠ ⎞ , x = ⎝ ⎛ x 1 x 2 x 3 x 4 ⎠ ⎞
A x = 0 Ax=0 A x = 0
{ x 1 + 3 x 2 + 6 x 3 + 0 = 0 − 2 x 1 + 4 x 2 + 6 x 3 + x 4 = 0 − 3 x 1 + x 2 + 0 + x 4 = 0 { x 1 + 3 x 2 + 6 x 3 + 0 = 0 0 + 10 x 2 + 18 x 3 + x 4 = 0 0 + 10 x 2 + 18 x 3 + x 4 = 0 \begin{cases} x_1+3x_2+6x_3+0=0 \\ -2x_1+4x_2+6x_3+x_4=0 \\ -3x_1+x_2+0+x_4=0 \end{cases}
\begin{cases}x_1+3x_2+6x_3+0=0 \\ 0+10x_2+18x_3+x_4=0 \\ 0+10x_2+18x_3+x_4=0 \end{cases} ⎩ ⎨ ⎧ x 1 + 3 x 2 + 6 x 3 + 0 = 0 − 2 x 1 + 4 x 2 + 6 x 3 + x 4 = 0 − 3 x 1 + x 2 + 0 + x 4 = 0 ⎩ ⎨ ⎧ x 1 + 3 x 2 + 6 x 3 + 0 = 0 0 + 10 x 2 + 18 x 3 + x 4 = 0 0 + 10 x 2 + 18 x 3 + x 4 = 0
{ x 1 = − 3 x 2 − 6 x 3 = − 3 / 5 x 3 + 3 / 10 x 4 x 2 = − 9 / 5 x 3 − 1 / 10 x 4 \begin{cases} x_1=-3x_2-6x_3=-3/5x_3+3/10x_4 \\ x_2=-9/5x_3-1/10x_4 \end{cases} { x 1 = − 3 x 2 − 6 x 3 = − 3/5 x 3 + 3/10 x 4 x 2 = − 9/5 x 3 − 1/10 x 4
x = ( x 1 x 2 x 3 x 4 ) = ( − 3 / 5 x 3 + 3 / 10 x 4 − 9 / 5 x 3 − 1 / 10 x 4 x 3 x 4 ) = x 3 ( − 3 / 5 − 9 / 5 1 0 ) + x 4 ( 3 / 10 − 1 / 10 0 1 ) ⇒ x=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}=\begin{pmatrix} -3/5x_3+3/10x_4 \\ -9/5x_3-1/10x_4 \\ x_3 \\ x_4 \end{pmatrix}= x_3 \begin{pmatrix} -3/5 \\ -9/5 \\ 1 \\0 \end{pmatrix}+ x_4 \begin{pmatrix} 3/10 \\ -1/10 \\ 0 \\1 \end{pmatrix} \Rightarrow x = ⎝ ⎛ x 1 x 2 x 3 x 4 ⎠ ⎞ = ⎝ ⎛ − 3/5 x 3 + 3/10 x 4 − 9/5 x 3 − 1/10 x 4 x 3 x 4 ⎠ ⎞ = x 3 ⎝ ⎛ − 3/5 − 9/5 1 0 ⎠ ⎞ + x 4 ⎝ ⎛ 3/10 − 1/10 0 1 ⎠ ⎞ ⇒
⇒ \Rightarrow ⇒ nullity(A)=2 (because nullity (A) = the number of parameters in the solution of Ax = 0)
A T = ( 1 − 2 − 3 3 4 1 6 6 0 0 1 1 ) , x = ( x 1 x 2 x 3 ) A^T=\begin{pmatrix} 1&-2&-3 \\ 3&4&1 \\ 6&6&0 \\ 0&1&1 \end{pmatrix} , x=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} A T = ⎝ ⎛ 1 3 6 0 − 2 4 6 1 − 3 1 0 1 ⎠ ⎞ , x = ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞
A T x = 0 A^Tx=0 A T x = 0
{ x 1 − 2 x 2 − 3 x 3 = 0 3 x 1 + 4 x 2 + x 3 = 0 6 x 1 + 6 x 2 + 0 = 0 0 + x 2 + x 3 = 0 { x 1 − 2 x 2 − 3 x 3 = 0 0 + 10 x 2 + 10 x 3 = 0 0 + 18 x 2 + 18 x 3 = 0 0 + x 2 + x 3 = 0 { x 1 − 2 x 2 − 3 x 3 = 0 0 + x 2 + x 3 = 0 \begin{cases} x_1-2x_2-3x_3=0 \\ 3x_1+4x_2+x_3=0 \\ 6x_1+6x_2+0=0 \\ 0+x_2+x_3=0 \end{cases}
\begin{cases} x_1-2x_2-3x_3=0 \\ 0+10x_2+10x_3=0 \\ 0+18x_2+18x_3=0 \\ 0+x_2+x_3=0 \end{cases}
\begin{cases} x_1-2x_2-3x_3=0 \\ 0+x_2+x_3=0 \end{cases} ⎩ ⎨ ⎧ x 1 − 2 x 2 − 3 x 3 = 0 3 x 1 + 4 x 2 + x 3 = 0 6 x 1 + 6 x 2 + 0 = 0 0 + x 2 + x 3 = 0 ⎩ ⎨ ⎧ x 1 − 2 x 2 − 3 x 3 = 0 0 + 10 x 2 + 10 x 3 = 0 0 + 18 x 2 + 18 x 3 = 0 0 + x 2 + x 3 = 0 { x 1 − 2 x 2 − 3 x 3 = 0 0 + x 2 + x 3 = 0
{ x 1 = 2 x 3 + 3 x 3 = x 3 x 2 = − x 3 \begin{cases}x_1=2x_3+3x_3=x_3 \\ x_2=-x_3\end{cases} { x 1 = 2 x 3 + 3 x 3 = x 3 x 2 = − x 3
x = ( x 1 x 2 x 3 ) = ( x 3 − x 3 x 3 ) = x 3 ( 1 − 1 1 ) ⇒ x=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}=\begin{pmatrix} x_3 \\- x_3 \\ x_3 \end{pmatrix} =
x_3 \begin{pmatrix}1 \\ -1\\ 1 \end{pmatrix} \Rightarrow x = ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ⎝ ⎛ x 3 − x 3 x 3 ⎠ ⎞ = x 3 ⎝ ⎛ 1 − 1 1 ⎠ ⎞ ⇒
⇒ \Rightarrow ⇒ nullity(A^T)=1 (because nullity (A) = the number of parameters in the solution of Ax = 0)
nullity(A)+nullity(A^T)=3 (=3+4-2*2)
b) We can use formula:
• for any mxn matrix A: rank (A) + nullity (A) = n
• for any matrix A: rank (A) = rank (A^T)
rank(A)+nullity(A)=n
rank(A^T)+nullity(A^T)=m
rank(A)+rank(A^T)+nullity(A)+nullity(A^T)=m+n
nullity(A)+nullity(A^T)=m+n-2*k, where k=rank(A)=rank(A^T)
2) B = ( 1 0 0 0 r − 6 6 0 s − 5 r + 6 0 0 7 ) B=\begin{pmatrix}1&0&0 \\ 0&r-6&6 \\ 0&s-5&r+6 \\ 0&0&7\end{pmatrix} B = ⎝ ⎛ 1 0 0 0 0 r − 6 s − 5 0 0 6 r + 6 7 ⎠ ⎞
rank (B) = dimension of its row space (or column space)
We can see that 1 and 4 rows are linear independent ⇒ \Rightarrow ⇒ rank (B) ≥ \geq ≥ 2
So, rank (B) can’t be equal to 1, there are no values of r and s for which rank(B)=1
Suppose that rank(B)=2.
1 and 4 rows are linear independent, rank(B)=2 ⇒ \Rightarrow ⇒ they are basis vectors of row space ⇒ \Rightarrow ⇒
⇒ ∃ a , b : ( 0 r − 6 6 ) = a ( 1 0 0 ) + b ( 0 0 7 ) , \Rightarrow \exists a,b: \begin{pmatrix} 0\\r-6\\6\end{pmatrix} =a \begin{pmatrix} 1\\0\\0\end{pmatrix}+b \begin{pmatrix} 0\\0\\7\end{pmatrix}, ⇒ ∃ a , b : ⎝ ⎛ 0 r − 6 6 ⎠ ⎞ = a ⎝ ⎛ 1 0 0 ⎠ ⎞ + b ⎝ ⎛ 0 0 7 ⎠ ⎞ ,
{ a = 0 0 = r − 6 7 b = 6 { a = 0 b = 6 / 7 r = 6 \begin{cases}
a=0 \\ 0=r-6 \\7b=6
\end{cases}
\begin{cases}
a=0 \\b=6/7\\r=6
\end{cases} ⎩ ⎨ ⎧ a = 0 0 = r − 6 7 b = 6 ⎩ ⎨ ⎧ a = 0 b = 6/7 r = 6
⇒ ∃ a , b : ( 0 s − 5 r + 6 ) = a ( 1 0 0 ) + b ( 0 0 7 ) , \Rightarrow \exists a,b: \begin{pmatrix} 0\\s-5\\r+6\end{pmatrix} =a \begin{pmatrix} 1\\0\\0\end{pmatrix}+b \begin{pmatrix} 0\\0\\7\end{pmatrix}, ⇒ ∃ a , b : ⎝ ⎛ 0 s − 5 r + 6 ⎠ ⎞ = a ⎝ ⎛ 1 0 0 ⎠ ⎞ + b ⎝ ⎛ 0 0 7 ⎠ ⎞ ,
{ a = 0 0 = s − 5 7 b = r + 6 = 12 { a = 0 b = 12 / 7 s = 5 \begin{cases}
a=0 \\ 0=s-5\\7b=r+6=12
\end{cases}
\begin{cases}
a=0 \\b=12/7\\s=5
\end{cases} ⎩ ⎨ ⎧ a = 0 0 = s − 5 7 b = r + 6 = 12 ⎩ ⎨ ⎧ a = 0 b = 12/7 s = 5
B = ( 1 0 0 0 0 6 0 0 12 0 0 7 ) B=\begin{pmatrix}1&0&0 \\ 0&0&6 \\ 0&0&12\\ 0&0&7\end{pmatrix} B = ⎝ ⎛ 1 0 0 0 0 0 0 0 0 6 12 7 ⎠ ⎞ has rank=2 (for r=6,s=5)
Comments