1)
a) "A=\\begin{pmatrix} 1&3&6&0 \\\\ -2&4&6&1 \\\\ -3&1&0&1 \\end{pmatrix}, \\; x=\\begin{pmatrix} x_1 \\\\ x_2 \\\\ x_3 \\\\ x_4 \\end{pmatrix}"
"Ax=0"
"\\begin{cases} x_1+3x_2+6x_3+0=0 \\\\ -2x_1+4x_2+6x_3+x_4=0 \\\\ -3x_1+x_2+0+x_4=0 \\end{cases} \n\\begin{cases}x_1+3x_2+6x_3+0=0 \\\\ 0+10x_2+18x_3+x_4=0 \\\\ 0+10x_2+18x_3+x_4=0 \\end{cases}"
"\\begin{cases} x_1=-3x_2-6x_3=-3\/5x_3+3\/10x_4 \\\\ x_2=-9\/5x_3-1\/10x_4 \\end{cases}"
"x=\\begin{pmatrix} x_1 \\\\ x_2 \\\\ x_3 \\\\ x_4 \\end{pmatrix}=\\begin{pmatrix} -3\/5x_3+3\/10x_4 \\\\ -9\/5x_3-1\/10x_4 \\\\ x_3 \\\\ x_4 \\end{pmatrix}= x_3 \\begin{pmatrix} -3\/5 \\\\ -9\/5 \\\\ 1 \\\\0 \\end{pmatrix}+ x_4 \\begin{pmatrix} 3\/10 \\\\ -1\/10 \\\\ 0 \\\\1 \\end{pmatrix} \\Rightarrow"
"\\Rightarrow" nullity(A)=2 (because nullity (A) = the number of parameters in the solution of Ax = 0)
"A^T=\\begin{pmatrix} 1&-2&-3 \\\\ 3&4&1 \\\\ 6&6&0 \\\\ 0&1&1 \\end{pmatrix} , x=\\begin{pmatrix} x_1 \\\\ x_2 \\\\ x_3 \\end{pmatrix}"
"A^Tx=0"
"\\begin{cases} x_1-2x_2-3x_3=0 \\\\ 3x_1+4x_2+x_3=0 \\\\ 6x_1+6x_2+0=0 \\\\ 0+x_2+x_3=0 \\end{cases}\n\\begin{cases} x_1-2x_2-3x_3=0 \\\\ 0+10x_2+10x_3=0 \\\\ 0+18x_2+18x_3=0 \\\\ 0+x_2+x_3=0 \\end{cases}\n\\begin{cases} x_1-2x_2-3x_3=0 \\\\ 0+x_2+x_3=0 \\end{cases}"
"\\begin{cases}x_1=2x_3+3x_3=x_3 \\\\ x_2=-x_3\\end{cases}"
"x=\\begin{pmatrix} x_1 \\\\ x_2 \\\\ x_3 \\end{pmatrix}=\\begin{pmatrix} x_3 \\\\- x_3 \\\\ x_3 \\end{pmatrix} =\nx_3 \\begin{pmatrix}1 \\\\ -1\\\\ 1 \\end{pmatrix} \\Rightarrow"
"\\Rightarrow" nullity(A^T)=1 (because nullity (A) = the number of parameters in the solution of Ax = 0)
nullity(A)+nullity(A^T)=3 (=3+4-2*2)
b) We can use formula:
• for any mxn matrix A: rank (A) + nullity (A) = n
• for any matrix A: rank (A) = rank (A^T)
rank(A)+nullity(A)=n
rank(A^T)+nullity(A^T)=m
rank(A)+rank(A^T)+nullity(A)+nullity(A^T)=m+n
nullity(A)+nullity(A^T)=m+n-2*k, where k=rank(A)=rank(A^T)
2) "B=\\begin{pmatrix}1&0&0 \\\\ 0&r-6&6 \\\\ 0&s-5&r+6 \\\\ 0&0&7\\end{pmatrix}"
rank (B) = dimension of its row space (or column space)
We can see that 1 and 4 rows are linear independent "\\Rightarrow" rank (B) "\\geq" 2
So, rank (B) can’t be equal to 1, there are no values of r and s for which rank(B)=1
Suppose that rank(B)=2.
1 and 4 rows are linear independent, rank(B)=2 "\\Rightarrow" they are basis vectors of row space "\\Rightarrow"
"\\Rightarrow \\exists a,b: \\begin{pmatrix} 0\\\\r-6\\\\6\\end{pmatrix} =a \\begin{pmatrix} 1\\\\0\\\\0\\end{pmatrix}+b \\begin{pmatrix} 0\\\\0\\\\7\\end{pmatrix},"
"\\begin{cases}\na=0 \\\\ 0=r-6 \\\\7b=6 \n\\end{cases}\n\\begin{cases}\na=0 \\\\b=6\/7\\\\r=6\n\\end{cases}"
"\\Rightarrow \\exists a,b: \\begin{pmatrix} 0\\\\s-5\\\\r+6\\end{pmatrix} =a \\begin{pmatrix} 1\\\\0\\\\0\\end{pmatrix}+b \\begin{pmatrix} 0\\\\0\\\\7\\end{pmatrix},"
"\\begin{cases}\na=0 \\\\ 0=s-5\\\\7b=r+6=12\n\\end{cases}\n\\begin{cases}\na=0 \\\\b=12\/7\\\\s=5\n\\end{cases}"
"B=\\begin{pmatrix}1&0&0 \\\\ 0&0&6 \\\\ 0&0&12\\\\ 0&0&7\\end{pmatrix}" has rank=2 (for r=6,s=5)
Comments
Leave a comment