Question #101026
1. Express the product Ax as a linear combination of the column vectors of A.
Close and open parenthesis 4 1 Close and open Parenthesis 2
-2 3 3

2. Suppose that the solution set of the homogeneous system Ax = 0 is given by the formulas

x1 = − 5r + 6s, x2 = r − 3s, x3 = r, x4 = s

Find a vector form of the general solution of Ax = 0.

3. Suppose that x1 = − 3, x2 = 4, x3 = 1, x4 = − 2 is a solution of a non homogeneous linear system Ax = b, and that the solution set of the homogeneous system Ax = 0 is given by the formulas x1 = − 5r + 6s, x2 = r − 4s, x3 = r, x4 = s. Find a vector form of the general solution of Ax = b.
1
Expert's answer
2020-01-07T09:50:01-0500

1.


A=(2233),x=(41)A=\begin{pmatrix} 2 & -2 \\ 3 & 3 \end{pmatrix}, x=\begin{pmatrix} 4 \\ 1 \end{pmatrix}

Ax=(2233)(41)=(24+(2)134+31)=Ax=\begin{pmatrix} 2 & -2 \\ 3 & 3 \end{pmatrix}\begin{pmatrix} 4 \\ 1 \end{pmatrix}=\begin{pmatrix} 2\cdot4+(-2)\cdot1 \\ 3\cdot4+3\cdot1 \end{pmatrix}=

=4(23)+1(23)=4\begin{pmatrix} 2 \\ 3 \end{pmatrix}+1\begin{pmatrix} -2 \\ 3 \end{pmatrix}

2.

The solution set of the homogeneous system Ax = 0 is given by the formulas


x1=5r+6s,x2=r3s,x3=r,x4=sx_1=-5r+6s, x_2=r-3s,x_3=r,x_4=s

The solution can be written in matrix form. Then


[x1x2x3x4]=[5r+6sr3srs]=r[5110]+s[6301]\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}=\begin{bmatrix} -5r+6s \\ r-3s \\ r \\ s \end{bmatrix}=r\begin{bmatrix} -5 \\ 1 \\ 1 \\ 0 \end{bmatrix}+s\begin{bmatrix} 6 \\ -3 \\ 0 \\ 1 \end{bmatrix}

Then


x=r[5110]+s[6301]x=r\begin{bmatrix} -5 \\ 1 \\ 1 \\ 0 \end{bmatrix}+s\begin{bmatrix} 6 \\ -3 \\ 0 \\ 1 \end{bmatrix}

3.

The solution set of the homogeneous system Ax = 0 is given by the formulas


x1=5r+6s,x2=r4s,x3=r,x4=sx_1=-5r+6s, x_2=r-4s,x_3=r,x_4=s

The solution can be written in matrix form. Then


[x1x2x3x4]=[5r+6sr4srs]=r[5110]+s[6401]\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}=\begin{bmatrix} -5r+6s \\ r-4s \\ r \\ s \end{bmatrix}=r\begin{bmatrix} -5 \\ 1 \\ 1 \\ 0 \end{bmatrix}+s\begin{bmatrix} 6 \\ -4 \\ 0 \\ 1 \end{bmatrix}

The solution set of the non homogeneous system Ax = b is given by the formulas


x1=3,x2=4,x3=1,x4=2x_1=-3, x_2=4,x_3=1,x_4=-2

The solution can be written in matrix form. Then


[x1x2x3x4]=[3412]\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}=\begin{bmatrix} -3 \\ 4 \\ 1 \\ -2 \end{bmatrix}



Hence the general solution is


x=[3412]+r[5110]+s[6401]x=\begin{bmatrix} -3 \\ 4 \\ 1 \\ -2 \end{bmatrix}+r\begin{bmatrix} -5 \\ 1 \\ 1 \\ 0 \end{bmatrix}+s\begin{bmatrix} 6 \\ -4 \\ 0 \\ 1 \end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS