Question #100468
1. Determine whether the set of all vectors of the form (a, b ,c) such that b=a+c+1 is a subspace of R3 .

2. Determine whether the vector p is in the span {S}. Given S = { p_1,p_2,p_3} where
p_1=2+x+〖4x〗^2, p_2=1-x+〖3x〗^2, p_3=3+2x+〖5x〗^2; p=7+8x+9x^2.

3. Using two methods, verify that the set S is linearly independent.
v1 = (2, -2, 0), v2=(6,1,4), v3=(2,0,-4)

4. Express v as a linear combination of the vectors v_(1,), v_2,v_3.

v=(2,-1,3), v1=(1,0,0), v2=(2,2,0), v3=(3,3,3)
1
Expert's answer
2019-12-16T11:17:37-0500
  1. For V1=(a,a+c+1,c),aR,cRV_1 = (a, a+c+1, c), a \in \R, c \in \R to be a subspace of R3\R^3 , it must be a vector space itself. Let us check the axioms: v1+v2=(a1,a1+c1+1,c1)+(a2,a2+c2+1,c2)\bold v_1 + \bold v_2 = (a_1, a_1 + c_1 + 1, c_1) + (a_2, a_2 + c_2 + 1, c_2) v1+v2=(a1+a2,(a1+a2)+(c1+c2)+2,c1+c2)V1\bold v_1 + \bold v_2 = (a_1 + a_2, (a_1+a_2) + (c_1+c_2) + 2, c_1 + c_2) \notin V_1, hence V1V_1 is not a subspace.
  2. For pspan(p1,p2,p3)\bold p \in span(\bold p_1, \bold p_2, \bold p_3), there must exist unique λ1,λ2,λ3\lambda_1, \lambda_2, \lambda_3, not all equal to zero, so that p=λ1p1+λ2p2+λ3p3\bold p = \lambda_1 \bold p_1 + \lambda_2 \bold p_2 + \lambda_3 \bold p_3. Writing the last equation in vector form, obtain: (21371128169259)\left(\begin{array}{ccc|c} 2 & 1 & 3 & 7\\ 1 & -1 & 2 & 8\\ 16 & 9 & 25 & 9 \end{array}\right). Performing Gauss-Jordan elimination on last matrix, obtain (100600101400133)\left(\begin{array}{ccc|c} 1 & 0 & 0 & 60\\ 0 & 1 & 0 & -14\\ 0 & 0 & 1 & -33 \end{array}\right), hence λ1=60,λ2=14,λ3=33\lambda_1 = 60, \lambda_2 = -14, \lambda_3 = -33 and vector p\bold p is in span of p1,p2,p3\bold p_1, \bold p_2, \bold p_3.
  3. First way: v1,v2,v3\bold v_1, \bold v_2, \bold v_3 are linearly independent, if λ1v1+λ2v2+λ3v3=0\lambda_1 \bold v_1 + \lambda_2 \bold v_2 + \lambda_3 \bold v_3 = 0 only when all λi=0\lambda_i = 0. Rewriting the last equation in vector form, obtain (262210044)(λ1λ2λ3)=0\left(\begin{array}{ccc} 2 & 6 & 2\\ -2 & 1 & 0\\ 0 & 4 & -4 \end{array}\right)\left(\begin{array}{c} \lambda_1\\ \lambda_2\\ \lambda_3 \end{array}\right) = \bold 0. Reducing the matrix, obtain (100010001)(λ1λ2λ3)=0\left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right)\left(\begin{array}{c} \lambda_1\\ \lambda_2\\ \lambda_3 \end{array}\right) = \bold 0, from where all λi=0\lambda_i = 0, hence v1,v2,v3\bold v_1, \bold v_2, \bold v_3 are linearly independent. Second way: Vectors are linearly independent, if the determinant of matrix, spanned by vectors is zero. det(262210044)=816(48)=720det \left(\begin{array}{ccc} 2 & 6 & 2\\ -2 & 1 & 0\\ 0 & 4 & -4 \end{array}\right) = -8 - 16 - (-48) = -72 \neq 0, hence vectors are linearly independent.
  4. As in Task 2, solve corresponding linear system of equations: (123202310033)\left(\begin{array}{ccc|c} 1 & 2 & 3 & 2\\ 0 & 2 & 3 & -1\\ 0 & 0 & 3 &3 \end{array}\right), from where λ1=3,λ2=2,\lambda_1 = 3, \lambda_2 = -2, λ3=1\lambda_3 = 1, hence v=3v12v2+v3\bold v = 3 \bold v_1 - 2 \bold v_2 + \bold v_3.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS