Solution:
We need to find the Orthogonal Basis by applying Gram-Schmidt algorithm.
Given β={1,x,x2,x3 } and < f, g > = ∫−11f(x) g(x)dx
From this
β1=1β2=xβ3=x2β4=x3
Next,
the Orthogonal vectors are
α1=1
∣∣α1∣∣2=<α1,α1>=<1,1>=∫−111×1dx=[x]−11=2
α2=β2−∣∣α1∣∣2<β2,α1> α1
α2=x−∣∣1∣∣2<x,1> ×1
α2=x−∫−111 dx∫−11x dx ×1=x−20=x
(since∫−11x dx=0)
Now,
α3=β3−∣∣α1∣∣2<β3,α1>×α1−∣∣α2∣∣2<β3,α2>×α2
α3=β3−∣∣1∣∣2<x2,1>×1−∣∣x∣∣2<x3,x>×x
α3=β3−∫−111 dx∫−11x2 dx×1−∫−11x×x dx∫−11x2 ×x dx×x
α3=β3−2×32×1−0=x2−31α4=β4−∣∣α1∣∣2<β4,α1>α1−∣∣α2∣∣2<β4,α2>α2−∣∣α3∣∣2<β4,α3>α3
α4=x3−∣∣1∣∣2<x3,1>×1−∣∣x∣∣2<x3,x>x2−∣∣x2−31∣∣2<x3,x2−31>×(x2−31)
=x3−53x
Answer: Orthogonal Basis = {α1,α2,α3,α4 } = {1,x,x2−31,x3−53x }
Comments