Question #97155
If V = P3 with the inner product < f, g >=
R 1
11
f(x)g(x)dx, apply the Gram-Schmidt algorithm
to obtain an orthogonal basis from B = {1, x, x2
, x3}
1
Expert's answer
2019-10-23T10:52:08-0400

Solution:

We need to find the Orthogonal Basis by applying Gram-Schmidt algorithm.

Given β=\beta ={1,x,x2,x3{1, x, x^2, x^3} } and < f, g > = 11f(x) g(x)dx\int_{-1}^ {1} f(x) \space g(x) dx


From this

β1=1β2=xβ3=x2β4=x3\beta_1 = 1\\ \beta_2 = x \\ \beta_3 = x^2 \\ \beta_4 = x^3

Next,

the Orthogonal vectors are

α1=1\alpha_1 = 1


α12=<α1,α1>=<1,1>=111×1dx=[x]11=2||\alpha_1||^2 = < \alpha_1, \alpha_1 > = <1, 1> = \int _{-1}^ {1} 1 \times 1 dx = [ x ]_{-1}^1 = 2

α2=β2<β2,α1>α12 α1\alpha_2 = \beta_2 - \frac {<\beta_2, \alpha_1>} {||\alpha_1||^2 } \space {\alpha_1}

α2=x<x,1>12 ×1\alpha_2 = x - \frac {<x, 1>} {||1||^2 } \space \times {1}

α2=x11x dx111 dx ×1=x02=x\alpha_2 = x - \frac {\int _{-1}^{1} x \space dx} {\int_{-1} ^{1}1 \space dx } \space \times {1} = x - \frac {0} {2} = x


(since11x dx=0)(since \int _{-1}^1 x \space dx = 0 )

Now,

α3=β3<β3,α1>α12×α1<β3,α2>α22×α2\alpha_3 = \beta_3 - \frac {<\beta_3, \alpha_1>} {||\alpha_1||^2 } \times \alpha_1 - \frac {<\beta_3, \alpha_2>} {||\alpha_2||^2} \times \alpha_2

α3=β3<x2,1>12×1<x3,x>x2×x\alpha_3 = \beta_3 - \frac {<x^2, 1>} {||1||^2 } \times 1 - \frac {<x^3, x>} {||x||^2} \times x

α3=β311x2 dx111 dx×111x2 ×x dx11x×x dx×x\alpha_3 = \beta_3 - \frac {\int_{-1}^1 x^2 \space dx} {\int _{-1}^1 1 \space dx} \times 1 - \frac {\int_{-1}^1 x^2 \space \times x \space dx} {\int_{-1}^1 x \times x \space dx } \times x

α3=β32×23×10=x213\alpha_3 = \beta_3 - 2 \times\frac {2} {3} \times 1 - 0 = x^2 - \frac {1} {3}α4=β4<β4,α1>α12α1<β4,α2>α22α2<β4,α3>α32α3\alpha_4 = \beta_4 - \frac {<\beta_4, \alpha_1> } {||\alpha_1||^2 } \alpha_1 - \frac {<\beta_4, \alpha_2> } {||\alpha_2||^2 } \alpha_2 - \frac {<\beta_4, \alpha_3> } {||\alpha_3||^2 } \alpha_3

α4=x3<x3,1>12×1<x3,x>x2x2<x3,x213>x2132×(x213)\alpha_4 = x^3 - \frac {< x^3, 1> } {||1||^2 } \times1 - \frac {<x^3, x> } {||x||^2 } x^2 - \frac {<x^3, x^2 - \frac {1}{3}> } {||x^2 - \frac {1}{3}||^2 } \times (x^2 - \frac {1}{3})


=x335x= x^3 - \frac {3}{5} x



Answer: Orthogonal Basis = {α1,α2,α3,α4\alpha_1, \alpha_2, \alpha_3, \alpha_4 } = {1,x,x213,x335x1, x, x^2 - \frac{1}{3}, x^3 - \frac {3}{5} x }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS