2 x 1 + x 2 + 2 x 3 = 0 , 2x_1+x_2+2x_3=0, 2 x 1 + x 2 + 2 x 3 = 0 ,
x 1 + 6 x 3 = 0 , x_1+6x_3=0, x 1 + 6 x 3 = 0 ,
x 2 + x 3 = 0. x_2+x_3=0. x 2 + x 3 = 0.
( R 1 ← R 1 − 2 R 2 ) (R_1 \gets R_1-2R_2) ( R 1 ← R 1 − 2 R 2 )
x 2 + 2 x 3 − 12 x 3 = 0 , x_2+2x_3-12x_3=0, x 2 + 2 x 3 − 12 x 3 = 0 ,
x 1 + 6 x 3 = 0 , x_1+6x_3=0, x 1 + 6 x 3 = 0 ,
x 2 + x 3 = 0. x_2+x_3=0. x 2 + x 3 = 0.
( R 1 ← R 1 − R 3 ) (R_1 \gets R_1-R_3) ( R 1 ← R 1 − R 3 )
− 11 x 3 = 0 , -11x_3=0, − 11 x 3 = 0 ,
x 1 + 6 x 3 = 0 , x_1+6x_3=0, x 1 + 6 x 3 = 0 ,
x 2 + x 3 = 0. x_2+x_3=0. x 2 + x 3 = 0.
Thus, x 1 = 0 , x 2 = 0 , x 3 = 0. x_1=0, x_2=0, x_3=0. x 1 = 0 , x 2 = 0 , x 3 = 0.
A basis for the solution space is ( 0 , 0 , 0 ) , (0,0,0), ( 0 , 0 , 0 ) , the dimension of this space in R 3 R^3 R 3 is 0.
2.2 x = 3 y − 5 z 2x=3y-5z 2 x = 3 y − 5 z
x = 3 y / 2 − 5 z / 2 x=3y/2-5z/2 x = 3 y /2 − 5 z /2
( ( 3 / 2 ) y − ( 5 / 2 ) z y z ) = ( ( 3 / 2 ) 1 0 ) y + ( − 5 / 2 0 1 ) z \begin{pmatrix}
( 3/2) y-(5/2)z \\
y\\
z
\end{pmatrix}=\begin{pmatrix}
(3/2) \\
1 \\
0
\end{pmatrix}y+\begin{pmatrix}
- 5/2 \\
0\\
1
\end{pmatrix}z ⎝ ⎛ ( 3/2 ) y − ( 5/2 ) z y z ⎠ ⎞ = ⎝ ⎛ ( 3/2 ) 1 0 ⎠ ⎞ y + ⎝ ⎛ − 5/2 0 1 ⎠ ⎞ z
{v 1 , v 2 v_1,v_2 v 1 , v 2 }={(3/2,1,0),(5/2,0,1)} spans R3
We just have to prove that a 1 , a 2 = 0 a_1,a_2=0 a 1 , a 2 = 0 in a 1 v 1 + a 2 v 2 = 0 a_1v_1+a_2v_2=0 a 1 v 1 + a 2 v 2 = 0
a 1 ( 3 / 2 , 1 , 0 ) + a 2 ( − 5 / 2 , 0 , 1 ) = 0 a_1(3/2,1,0)+a_2(-5/2,0,1)=0 a 1 ( 3/2 , 1 , 0 ) + a 2 ( − 5/2 , 0 , 1 ) = 0
( 3 / 2 ) a 1 − ( 5 / 2 ) a 2 = 0 (3/2)a_1-(5/2)a_2=0 ( 3/2 ) a 1 − ( 5/2 ) a 2 = 0
a 1 = 0 a_1=0 a 1 = 0
a 2 = 0 a_2=0 a 2 = 0
So, { v 1 , v 2 v_1,v_2 v 1 , v 2 } is the basis of the subspace in R3 , the dimension of the subspace in R 3 R^3 R 3 is 2.
3.(D)
v 1 = ( 1 , − 1 , 3 , − 6 ) v_1=(1,-1,3,-6) v 1 = ( 1 , − 1 , 3 , − 6 )
v 2 = ( − 3 , 4 , − 12 , 24 ) v_2=(-3,4,-12,24) v 2 = ( − 3 , 4 , − 12 , 24 )
v 3 = ( x 1 , y 1 , z 1 , w 1 ) v_3=(x_1,y_1,z_1,w_1) v 3 = ( x 1 , y 1 , z 1 , w 1 )
v 4 = ( x 2 , y 2 , z 2 , w 2 ) v_4=(x_2,y_2,z_2,w_2) v 4 = ( x 2 , y 2 , z 2 , w 2 )
a 1 v 1 + a 2 v 2 + a 3 v 3 + a 4 v 4 = 0 a_1v_1+a_2v_2+a_3v_3+a_4v_4=0 a 1 v 1 + a 2 v 2 + a 3 v 3 + a 4 v 4 = 0
a 1 ( 1 , − 1 , 3 , − 6 ) + a 2 ( − 3 , 4 , − 12 , 24 ) + a 3 ( x 1 , y 1 , z 1 , w 1 ) + a 4 ( x 2 , y 2 , z 2 , w 2 ) = 0 a_1 (1,-1,3,-6) +a_2(-3,4,-12,24)+a_3(x_1,y_1,z_1,w_1)+a_4 (x_2,y_2,z_2,w_2) =0 a 1 ( 1 , − 1 , 3 , − 6 ) + a 2 ( − 3 , 4 , − 12 , 24 ) + a 3 ( x 1 , y 1 , z 1 , w 1 ) + a 4 ( x 2 , y 2 , z 2 , w 2 ) = 0
From above we obtain the following equation:
a 1 − 3 a 2 + x 1 a 3 + x 2 a 4 = 0 a_1-3a_2+x_1a_3+x_2a_4=0 a 1 − 3 a 2 + x 1 a 3 + x 2 a 4 = 0
− a 1 + 4 a 2 + y 1 a 3 + y 2 a 4 = 0 -a_1+4a_2+y_1a_3+y_2a_4=0 − a 1 + 4 a 2 + y 1 a 3 + y 2 a 4 = 0
3 a 1 − 12 a 2 + z 1 a 3 + z 2 a 4 = 0 3a_1-12a_2+z_1a_3+z_2a_4=0 3 a 1 − 12 a 2 + z 1 a 3 + z 2 a 4 = 0
− 6 a 1 + 24 a 2 + w 1 a 3 + w 2 a 4 = 0 -6a_1+24a_2+w_1a_3+w_2a_4=0 − 6 a 1 + 24 a 2 + w 1 a 3 + w 2 a 4 = 0
From the options we put the values of v3 and v4 in the above equations.
a 1 = a 2 = a 3 = a 4 = 0 a_1=a_2=a_3=a_4=0 a 1 = a 2 = a 3 = a 4 = 0 only for D option.
Comments