Question #101022
1. Determine the dimension of and a basis for the solution space of the homogeneous linear system.

2x subscript 1 + x subscript 2 + 2x subscript 3 = 0
x subscript 1 + 6x subscript 3 = 0
x subscript 2 + x subscript 3 = 0

2. Find a basis for the given subspace of R Superscript 3, and state its dimension for the plane 2 x - 3 y + 5 z = 0.

3. Let v1 = (1,-1,3,-6) and v2 = (-3,4,-12,24).
Find standard basis vectors for R4 that can be added to the set {v1, v2} to produce a basis for R4.

A. v3 = (1,0,0,0) and v4 = (0,1,0,0)
B. v3 = (0,0,1,0) and v4 = (1,0,0,0)
C. v3 = (1,0,0,0) and v4 = (0,0,0,1)
D. v3 = (0,1,0,0) and v4 = (0,0,0,1)
1
Expert's answer
2020-01-12T15:03:17-0500

2x1+x2+2x3=0,2x_1+x_2+2x_3=0,

x1+6x3=0,x_1+6x_3=0,

x2+x3=0.x_2+x_3=0.

(R1R12R2)(R_1 \gets R_1-2R_2)

x2+2x312x3=0,x_2+2x_3-12x_3=0,

x1+6x3=0,x_1+6x_3=0,

x2+x3=0.x_2+x_3=0.

(R1R1R3)(R_1 \gets R_1-R_3)

11x3=0,-11x_3=0,

x1+6x3=0,x_1+6x_3=0,

x2+x3=0.x_2+x_3=0.

Thus, x1=0,x2=0,x3=0.x_1=0, x_2=0, x_3=0.

A basis for the solution space is (0,0,0),(0,0,0), the dimension of this space in R3R^3 is 0.

2.2x=3y5z2x=3y-5z

x=3y/25z/2x=3y/2-5z/2

((3/2)y(5/2)zyz)=((3/2)10)y+(5/201)z\begin{pmatrix} ( 3/2) y-(5/2)z \\ y\\ z \end{pmatrix}=\begin{pmatrix} (3/2) \\ 1 \\ 0 \end{pmatrix}y+\begin{pmatrix} - 5/2 \\ 0\\ 1 \end{pmatrix}z

{v1,v2v_1,v_2 }={(3/2,1,0),(5/2,0,1)} spans R3

We just have to prove that a1,a2=0a_1,a_2=0 in a1v1+a2v2=0a_1v_1+a_2v_2=0

a1(3/2,1,0)+a2(5/2,0,1)=0a_1(3/2,1,0)+a_2(-5/2,0,1)=0

(3/2)a1(5/2)a2=0(3/2)a_1-(5/2)a_2=0

a1=0a_1=0

a2=0a_2=0

So, { v1,v2v_1,v_2 } is the basis of the subspace in R3, the dimension of the subspace in R3R^3 is 2.

3.(D)

v1=(1,1,3,6)v_1=(1,-1,3,-6)

v2=(3,4,12,24)v_2=(-3,4,-12,24)

v3=(x1,y1,z1,w1)v_3=(x_1,y_1,z_1,w_1)

v4=(x2,y2,z2,w2)v_4=(x_2,y_2,z_2,w_2)

a1v1+a2v2+a3v3+a4v4=0a_1v_1+a_2v_2+a_3v_3+a_4v_4=0

a1(1,1,3,6)+a2(3,4,12,24)+a3(x1,y1,z1,w1)+a4(x2,y2,z2,w2)=0a_1 (1,-1,3,-6) +a_2(-3,4,-12,24)+a_3(x_1,y_1,z_1,w_1)+a_4 (x_2,y_2,z_2,w_2) =0

From above we obtain the following equation:

a13a2+x1a3+x2a4=0a_1-3a_2+x_1a_3+x_2a_4=0

a1+4a2+y1a3+y2a4=0-a_1+4a_2+y_1a_3+y_2a_4=0

3a112a2+z1a3+z2a4=03a_1-12a_2+z_1a_3+z_2a_4=0

6a1+24a2+w1a3+w2a4=0-6a_1+24a_2+w_1a_3+w_2a_4=0

From the options we put the values of v3 and v4 in the above equations.

a1=a2=a3=a4=0a_1=a_2=a_3=a_4=0 only for D option.








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS