2x1+x2+2x3=0,
x1+6x3=0,
x2+x3=0.
(R1←R1−2R2)
x2+2x3−12x3=0,
x1+6x3=0,
x2+x3=0.
(R1←R1−R3)
−11x3=0,
x1+6x3=0,
x2+x3=0.
Thus, x1=0,x2=0,x3=0.
A basis for the solution space is (0,0,0), the dimension of this space in R3 is 0.
2.2x=3y−5z
x=3y/2−5z/2
⎝⎛(3/2)y−(5/2)zyz⎠⎞=⎝⎛(3/2)10⎠⎞y+⎝⎛−5/201⎠⎞z
{v1,v2 }={(3/2,1,0),(5/2,0,1)} spans R3
We just have to prove that a1,a2=0 in a1v1+a2v2=0
a1(3/2,1,0)+a2(−5/2,0,1)=0
(3/2)a1−(5/2)a2=0
a1=0
a2=0
So, { v1,v2 } is the basis of the subspace in R3, the dimension of the subspace in R3 is 2.
3.(D)
v1=(1,−1,3,−6)
v2=(−3,4,−12,24)
v3=(x1,y1,z1,w1)
v4=(x2,y2,z2,w2)
a1v1+a2v2+a3v3+a4v4=0
a1(1,−1,3,−6)+a2(−3,4,−12,24)+a3(x1,y1,z1,w1)+a4(x2,y2,z2,w2)=0
From above we obtain the following equation:
a1−3a2+x1a3+x2a4=0
−a1+4a2+y1a3+y2a4=0
3a1−12a2+z1a3+z2a4=0
−6a1+24a2+w1a3+w2a4=0
From the options we put the values of v3 and v4 in the above equations.
a1=a2=a3=a4=0 only for D option.
Comments