Question #101024
1. 1. Find a basis for the subspace of R Superscript 3 that is spanned by the vectors

v1 = (1, 0, 0), v2 = (1, 1, 0), v3 = (3, 1, 0), v4 = (0, -2, 0). Choose the correct letter.

A. v1 and v2 form a basis for span {v1, v2, v3, v4}.
B . v2 and v3 form a basis for span {v1, v2, v3, v4}.
C. v3 and v4 form a basis for span {v1, v2, v3, v4}.
D. v1 and v3 form a basis for span {v1, v2, v3, v4}.
E. v2 and v4 form a basis for span {v1, v2, v3, v4}.
F. v1 and v4 form a basis for span {v1, v2, v3, v4}.
1
Expert's answer
2020-01-12T14:17:34-0500

c1v1+c2v2+c3v3+c4v4=0c_1v_1+c_2v_2+c_3v_3+c_4v_4=0

c1(1,0,0)+c2(1,1,0)+c3(3,1,0)+c4(0,2,0)=0c_1(1, 0, 0)+c_2(1, 1, 0)+c_3(3, 1, 0)+c_4(0, -2, 0)=0

From the above equation we get the following equations:

c1+c2+3c3=0c_1+c_2+3c_3=0

c2+c32c4=0c_2+c_3-2c_4=0

Simplifying we get:

c1=2c32c4c_1=2c_3-2c_4

c2=2c4c3c_2=2c_4-c_3

The {v1,v2v_1,v_2 } spans span of subspace and are linearly independent.

Indeed,

c1v1+c2v2=0,c_1v_1+c_2v_2=0, c1(1,0,0)+c2(1,1,0)=0.c_1(1,0,0)+c_2(1,1,0)=0.

We obtain the following equations

c1+c2=0,c_1+c_2=0,

c2=0.c_2=0.

Hence c2=0,c1=0.c_2=0, c_1=0.

Thus, {v1,v2v_1,v_2 } is the basis.

Checking option (A)

v3=2v1+v2,v_3=2v_1+v_2, v4=2v12v2.v_4=2v_1-2v_2.

Thus, v1v_1 and v2v_2 form a basis for span {v1,v2,v3,v4}.\{ v_1, v_2, v_3, v_4 \}.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS