Question #101023
1. Let Upper T Subscript Upper A Baseline colon Upper R Superscript 3 Baseline right-arrow Upper R Superscript 3 be multiplication by A and find the dimension of the subspace of Upper R Superscript 3 consisting of all vectors x for which Upper T Subscript Upper A Baseline left-parenthesis x right-parenthesis equals 0.

a. A= 1 1 0
1 0 3
1 0 3
The dimension is????

b. A = 1 4 0
1 4 0
1 4 0
The dimension is???

c. A = 3 0 0
-3 3 0
3 3 3
The dimension is????
1
Expert's answer
2020-01-10T13:25:04-0500

Ax=0,x=[x1x2x3]Ax=0, \quad x= \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}

a)A=[110103103]a) A = \begin{bmatrix} 1&1&0 \\ 1&0&3 \\ 1&0&3 \end{bmatrix}

Ax=0  {x1+x2=0x1+3x3=0x1+3x3=0Ax=0 \; \Leftrightarrow \begin{cases} x_1+x_2=0 \\ x_1+3x_3=0 \\ x_1+3x_3=0 \end{cases}

x1=x2=3x3x_1=-x_2=-3x_3

[x1x2x3]=[3x33x3x3]=x3[331],x3R\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3x_3 \\ 3x_3 \\ x_3 \end{bmatrix} = x_3\begin{bmatrix} -3 \\ 3 \\ 1 \end{bmatrix}, \forall x_3 \in \mathbb{R}

dimension  of  subspace  of  R3  consisting  of  all  vectors  x  for  which  Ax=0\Rightarrow dimension \; of \; sub space \; of \; \mathbb{R}^3 \; consisting \; of \; all \; vectors \; x \; for \; which \; Ax=0

equals  1.equals \; 1.

b)A=[140140140]b) A = \begin{bmatrix} 1&4&0 \\ 1&4&0 \\ 1&4&0 \end{bmatrix}

Ax=0  {x1+4x2=0x1+4x2=0x1+4x2=0Ax=0 \; \Leftrightarrow \begin{cases} x_1+4x_2=0 \\ x_1+4x_2=0 \\ x_1+4x_2=0 \end{cases}

x1=4x2x_1=-4x_2

[x1x2x3]=[4x2x2x3]=x2[410]+x3[001]x2,x3R\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4x_2 \\ x_2 \\ x_3 \end{bmatrix} = x_2\begin{bmatrix} -4 \\ 1 \\ 0 \end{bmatrix}+x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \forall x_2,x_3 \in \mathbb{R}

dimension  of  subspace  of  R3  consisting  of  all  vectors  x  for  which  Ax=0\Rightarrow dimension \; of \; sub space \; of \; \mathbb{R}^3 \; consisting \; of \; all \; vectors \; x \; for \; which \; Ax=0

equals  2.equals \; 2.

c)A=[300330333]c) A = \begin{bmatrix} 3&0&0 \\ -3&3&0 \\ 3&3&3 \end{bmatrix}

Ax=0  {x1=03x1+3x2=03x1+3x2+3x3=0Ax=0 \; \Leftrightarrow \begin{cases} x_1=0 \\ -3x_1+3x_2=0 \\ 3x_1+3x_2+3x_3=0 \end{cases}

x2=x1=0,x3=x1x2=0x_2=x_1=0, x_3=-x_1-x_2=0

[x1x2x3]=[000]\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

dimension  of  subspace  of  R3  consisting  of  all  vectors  x  for  which  Ax=0\Rightarrow dimension \; of \; sub space \; of \; \mathbb{R}^3 \; consisting \; of \; all \; vectors \; x \; for \; which \; Ax=0

equals  0.equals \; 0.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS