A x = 0 , x = [ x 1 x 2 x 3 ] Ax=0, \quad x= \begin{bmatrix}
x_1
\\ x_2
\\ x_3
\end{bmatrix} A x = 0 , x = ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤
a ) A = [ 1 1 0 1 0 3 1 0 3 ] a) A = \begin{bmatrix}
1&1&0
\\ 1&0&3
\\ 1&0&3
\end{bmatrix} a ) A = ⎣ ⎡ 1 1 1 1 0 0 0 3 3 ⎦ ⎤
A x = 0 ⇔ { x 1 + x 2 = 0 x 1 + 3 x 3 = 0 x 1 + 3 x 3 = 0 Ax=0 \; \Leftrightarrow \begin{cases} x_1+x_2=0 \\ x_1+3x_3=0 \\ x_1+3x_3=0 \end{cases} A x = 0 ⇔ ⎩ ⎨ ⎧ x 1 + x 2 = 0 x 1 + 3 x 3 = 0 x 1 + 3 x 3 = 0
x 1 = − x 2 = − 3 x 3 x_1=-x_2=-3x_3 x 1 = − x 2 = − 3 x 3
[ x 1 x 2 x 3 ] = [ − 3 x 3 3 x 3 x 3 ] = x 3 [ − 3 3 1 ] , ∀ x 3 ∈ R \begin{bmatrix}
x_1
\\ x_2
\\ x_3
\end{bmatrix}
= \begin{bmatrix}
-3x_3
\\ 3x_3
\\ x_3
\end{bmatrix}
= x_3\begin{bmatrix}
-3
\\ 3
\\ 1
\end{bmatrix}, \forall x_3 \in \mathbb{R} ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ = ⎣ ⎡ − 3 x 3 3 x 3 x 3 ⎦ ⎤ = x 3 ⎣ ⎡ − 3 3 1 ⎦ ⎤ , ∀ x 3 ∈ R
⇒ d i m e n s i o n o f s u b s p a c e o f R 3 c o n s i s t i n g o f a l l v e c t o r s x f o r w h i c h A x = 0 \Rightarrow dimension \; of \; sub space \; of \; \mathbb{R}^3 \; consisting \; of \; all \; vectors \; x \; for \; which \; Ax=0 ⇒ d im e n s i o n o f s u b s p a ce o f R 3 co n s i s t in g o f a ll v ec t ors x f or w hi c h A x = 0
e q u a l s 1. equals \; 1. e q u a l s 1.
b ) A = [ 1 4 0 1 4 0 1 4 0 ] b) A = \begin{bmatrix}
1&4&0
\\ 1&4&0
\\ 1&4&0
\end{bmatrix} b ) A = ⎣ ⎡ 1 1 1 4 4 4 0 0 0 ⎦ ⎤
A x = 0 ⇔ { x 1 + 4 x 2 = 0 x 1 + 4 x 2 = 0 x 1 + 4 x 2 = 0 Ax=0 \; \Leftrightarrow \begin{cases} x_1+4x_2=0 \\ x_1+4x_2=0 \\ x_1+4x_2=0 \end{cases} A x = 0 ⇔ ⎩ ⎨ ⎧ x 1 + 4 x 2 = 0 x 1 + 4 x 2 = 0 x 1 + 4 x 2 = 0
x 1 = − 4 x 2 x_1=-4x_2 x 1 = − 4 x 2
[ x 1 x 2 x 3 ] = [ − 4 x 2 x 2 x 3 ] = x 2 [ − 4 1 0 ] + x 3 [ 0 0 1 ] ∀ x 2 , x 3 ∈ R \begin{bmatrix}
x_1
\\ x_2
\\ x_3
\end{bmatrix}
= \begin{bmatrix}
-4x_2
\\ x_2
\\ x_3
\end{bmatrix}
= x_2\begin{bmatrix}
-4
\\ 1
\\ 0
\end{bmatrix}+x_3 \begin{bmatrix}
0
\\ 0
\\ 1 \end{bmatrix} \forall x_2,x_3 \in \mathbb{R} ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ = ⎣ ⎡ − 4 x 2 x 2 x 3 ⎦ ⎤ = x 2 ⎣ ⎡ − 4 1 0 ⎦ ⎤ + x 3 ⎣ ⎡ 0 0 1 ⎦ ⎤ ∀ x 2 , x 3 ∈ R
⇒ d i m e n s i o n o f s u b s p a c e o f R 3 c o n s i s t i n g o f a l l v e c t o r s x f o r w h i c h A x = 0 \Rightarrow dimension \; of \; sub space \; of \; \mathbb{R}^3 \; consisting \; of \; all \; vectors \; x \; for \; which \; Ax=0 ⇒ d im e n s i o n o f s u b s p a ce o f R 3 co n s i s t in g o f a ll v ec t ors x f or w hi c h A x = 0
e q u a l s 2. equals \; 2. e q u a l s 2.
c ) A = [ 3 0 0 − 3 3 0 3 3 3 ] c) A = \begin{bmatrix}
3&0&0
\\ -3&3&0
\\ 3&3&3
\end{bmatrix} c ) A = ⎣ ⎡ 3 − 3 3 0 3 3 0 0 3 ⎦ ⎤
A x = 0 ⇔ { x 1 = 0 − 3 x 1 + 3 x 2 = 0 3 x 1 + 3 x 2 + 3 x 3 = 0 Ax=0 \; \Leftrightarrow \begin{cases} x_1=0 \\ -3x_1+3x_2=0 \\ 3x_1+3x_2+3x_3=0 \end{cases} A x = 0 ⇔ ⎩ ⎨ ⎧ x 1 = 0 − 3 x 1 + 3 x 2 = 0 3 x 1 + 3 x 2 + 3 x 3 = 0
x 2 = x 1 = 0 , x 3 = − x 1 − x 2 = 0 x_2=x_1=0, x_3=-x_1-x_2=0 x 2 = x 1 = 0 , x 3 = − x 1 − x 2 = 0
[ x 1 x 2 x 3 ] = [ 0 0 0 ] \begin{bmatrix}
x_1
\\ x_2
\\ x_3
\end{bmatrix} = \begin{bmatrix}
0
\\ 0
\\ 0
\end{bmatrix} ⎣ ⎡ x 1 x 2 x 3 ⎦ ⎤ = ⎣ ⎡ 0 0 0 ⎦ ⎤
⇒ d i m e n s i o n o f s u b s p a c e o f R 3 c o n s i s t i n g o f a l l v e c t o r s x f o r w h i c h A x = 0 \Rightarrow dimension \; of \; sub space \; of \; \mathbb{R}^3 \; consisting \; of \; all \; vectors \; x \; for \; which \; Ax=0 ⇒ d im e n s i o n o f s u b s p a ce o f R 3 co n s i s t in g o f a ll v ec t ors x f or w hi c h A x = 0
e q u a l s 0. equals \; 0. e q u a l s 0.
Comments