1
The characteristic matrix has the form
A−λE=(9−λ−21−3−λ)
The characteristic equation has the form
∣∣9−λ−21−3−λ∣∣=0(9−λ)(−3−λ)−(−2)=0−27−9λ+3λ+λ2+2=0λ2−6λ−25=0
2
The image of v=(1,4,9)
T(v1,v2,v3)=(v2−v1,v2=v2,2v3)
T(v)=T(1;4;9)=(4−1,x,2⋅9)=(3,x,18)
where x=4
3a
T(a,b)=a2
If T is a linear transformation then
∀x=(x1,x2)∈R2,y=(y1,y2)∈R2
1)T(x+y)=T(x)+T(y)
2)T(αx)=αT(x)
1)T(x+y)=T(x1+y1,x2+y2)=(x1+y1)2=x12+2x1y1+y12
T(x)=T(x1,x2)=x12,T(y)=T(y1,y2)=y12
T(x)+T(y)=x12+y12
T(x+y)=T(x)+T(y)
T is not a linear transformation
3b
T(a,b,c)=a3
If T is a linear transformation then
∀x=(x1,x2,x3)∈R3,y=(y1,y2,y3)∈R3
1)T(x+y)=T(x)+T(y)2)T(αx)=αT(x)
1)T(x+y)=T(x1+y1,x2+y2,x3+y3)==(x1+y1)3=x13+3x12y1+3x1y12+y13T(x)=T(x1,x2,x3)=x13
T(y)=T(y1,y2,y3)=y13T(x)+T(y)=x13+y13
T(x+y)=T(x)+T(y)
T is not a linear transformation
4
The characteristic equation has the form
∣A−λE∣=∣∣6−λ−116−4−λ∣∣=0(6−λ)(−4−λ)+16=0−24−6λ+4λ+λ2+16=0λ2−2λ−8=0D=4+4⋅8=36λ1=22−6=2−4=−2λ2=22+6=28=4
So, λ1=−2,λ2=4 .
Find a vector x=(x1,x2),x=0 that satisfies the condition
(A−λ1E)x=01)λ1=−2(8−116−2)⋅(x1x2)=(00)
{8x1+16x2=0−x1−2x2=0
x1=−2x2,x2∈R
x=(−2;1)
2)λ2=4(2−116−8)⋅(x1x2)=(00)
{2x1+16x2=0−x1−8x2=0
x1=−8x2,x2∈Rx=(−8;1)
Comments