Question #101515
C03

1. Write the characteristic equation of A = 9 1
-2 -3

2. Use the function to find the image of v= ( 1 4 9).
T(v1, v2, v3)=(v2-v1, v2 is not equal to v2, 2v3)

3a. Determine whether or not T R^2 arrow R is a linear transformation.
T(a,b)= a^2.

3b. Determine whether or not T R^3 arrow R is a linear transformation.
T(a,b)= a^3

4. Let A = 6 16 Show that -2 is an eigenvector with the corresponding eigenvalue of -2.
-1 -4 1
1
Expert's answer
2020-01-21T09:04:20-0500

1

The characteristic matrix has the form

AλE=(9λ123λ)A-\lambda E=\begin{pmatrix} 9-\lambda & 1 \\ -2 & -3-\lambda \end{pmatrix}\\

The characteristic equation has the form

9λ123λ=0(9λ)(3λ)(2)=0279λ+3λ+λ2+2=0λ26λ25=0\begin{vmatrix} 9-\lambda & 1 \\ -2 & -3-\lambda \end{vmatrix}=0\\ (9-\lambda)(-3-\lambda)-(-2)=0\\ -27-9\lambda+3\lambda+\lambda^{2}+2=0\\ \lambda^{2}-6\lambda-25=0


2

The image of v=(1,4,9)

T(v1,v2,v3)=(v2v1,v2v2,2v3)T(v_{1},v_{2},v_{3})=(v_{2}-v_{1},v_{2}\not=v_{2},2v_{3})

T(v)=T(1;4;9)=(41,x,29)=(3,x,18)T(v)=T(1;4;9)=(4-1,x,2\cdot9)=(3,x,18)

where x4x\not=4


3a


T(a,b)=a2T(a,b)=a^{2}

If T is a linear transformation then

x=(x1,x2)R2,y=(y1,y2)R2\forall x=(x_{1},x_{2})\in R^{2}, y=(y_1,y_2)\in R^{2}

1)T(x+y)=T(x)+T(y)T(x+y)=T(x)+T(y)

2)T(αx)=αT(x)T(\alpha x)=\alpha T(x)


1)T(x+y)=T(x1+y1,x2+y2)=(x1+y1)2=x12+2x1y1+y12T(x+y)=T(x_1+y_1,x_2+y_2)=(x_1+y_1)^{2}=x_1^2+2x_1y_1+y_1^2

T(x)=T(x1,x2)=x12,T(y)=T(y1,y2)=y12T(x)=T(x_1,x_2)=x_1^2, T(y)=T(y_1,y_2)=y_1^2

T(x)+T(y)=x12+y12T(x)+T(y)=x_1^2+y_1^2

T(x+y)T(x)+T(y)T(x+y)\not=T(x)+T(y)

T is not a linear transformation


3b

T(a,b,c)=a3T(a,b,c)=a^3

If T is a linear transformation then

x=(x1,x2,x3)R3,y=(y1,y2,y3)R3\forall x=(x_1,x_2,x_3)\in R^3, y=(y_1,y_2,y_3)\in R^3

1)T(x+y)=T(x)+T(y)2)T(αx)=αT(x)1)T(x+y)=T(x)+T(y)\\ 2) T(\alpha x)=\alpha T(x)


1)T(x+y)=T(x1+y1,x2+y2,x3+y3)==(x1+y1)3=x13+3x12y1+3x1y12+y13T(x)=T(x1,x2,x3)=x131) T(x+y)=T(x_1+y_1,x_2+y_2,x_3+y_3)=\\ =(x_1+y_1)^3=x_1^3+3x_1^2y_1+3x_1y_1^2+y_1^3\\ T(x)=T(x_1,x_2,x_3)=x_1^3

T(y)=T(y1,y2,y3)=y13T(x)+T(y)=x13+y13T(y)=T(y_1,y_2,y_3)=y_1^3\\ T(x)+T(y)=x_1^3+y_1^3

T(x+y)T(x)+T(y)T(x+y)\not =T(x)+T(y)

T is not a linear transformation


4

The characteristic equation has the form

AλE=6λ1614λ=0(6λ)(4λ)+16=0246λ+4λ+λ2+16=0λ22λ8=0D=4+48=36λ1=262=42=2λ2=2+62=82=4|A-\lambda E|=\begin{vmatrix} 6-\lambda & 16 \\ -1 & -4-\lambda \end{vmatrix}=0\\ (6-\lambda)(-4-\lambda)+16=0\\ -24-6\lambda+4\lambda+\lambda^2+16=0\\ \lambda^2-2\lambda-8=0\\ D=4+4\cdot8=36\\ \lambda_1=\frac{2-6}{2}=\frac{-4}{2}=-2\\ \lambda_2=\frac{2+6}{2}=\frac{8}{2}=4\\

So, λ1=2,λ2=4\lambda_1=-2, \lambda_2=4 .

Find a vector x=(x1,x2),x0x=(x_1,x_2), x\not=0 that satisfies the condition

(Aλ1E)x=01)λ1=2(81612)(x1x2)=(00)(A-\lambda_1E)x=0\\ 1) \lambda_1=-2\\ \begin{pmatrix} 8 & 16 \\ -1 & -2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \end{pmatrix}

{8x1+16x2=0x12x2=0\left \{ \begin{matrix} 8x_1+16x_2=0 \\ -x_1-2x_{2}=0 \end{matrix}\right.

x1=2x2,x2Rx_1=-2x_2, x_2\in R

x=(2;1)x=(-2;1)

2)λ2=4(21618)(x1x2)=(00)2)\lambda_2=4\\ \begin{pmatrix} 2 & 16 \\ -1 & -8 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \end{pmatrix}

{2x1+16x2=0x18x2=0\left \{ \begin{matrix} 2x_1+16x_2=0 \\ -x_1-8x_{2}=0 \end{matrix} \right.

x1=8x2,x2Rx=(8;1)x_1=-8x_2, x_2\in R\\ x=(-8;1)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS