Answer to Question #101515 in Linear Algebra for Henderson

Question #101515
C03

1. Write the characteristic equation of A = 9 1
-2 -3

2. Use the function to find the image of v= ( 1 4 9).
T(v1, v2, v3)=(v2-v1, v2 is not equal to v2, 2v3)

3a. Determine whether or not T R^2 arrow R is a linear transformation.
T(a,b)= a^2.

3b. Determine whether or not T R^3 arrow R is a linear transformation.
T(a,b)= a^3

4. Let A = 6 16 Show that -2 is an eigenvector with the corresponding eigenvalue of -2.
-1 -4 1
1
Expert's answer
2020-01-21T09:04:20-0500

1

The characteristic matrix has the form

"A-\\lambda E=\\begin{pmatrix}\n 9-\\lambda & 1 \\\\\n -2 & -3-\\lambda\n\\end{pmatrix}\\\\"

The characteristic equation has the form

"\\begin{vmatrix}\n 9-\\lambda & 1 \\\\\n -2 & -3-\\lambda\n\\end{vmatrix}=0\\\\\n(9-\\lambda)(-3-\\lambda)-(-2)=0\\\\\n-27-9\\lambda+3\\lambda+\\lambda^{2}+2=0\\\\\n\\lambda^{2}-6\\lambda-25=0"


2

The image of v=(1,4,9)

"T(v_{1},v_{2},v_{3})=(v_{2}-v_{1},v_{2}\\not=v_{2},2v_{3})"

"T(v)=T(1;4;9)=(4-1,x,2\\cdot9)=(3,x,18)"

where "x\\not=4"


3a


"T(a,b)=a^{2}"

If T is a linear transformation then

"\\forall x=(x_{1},x_{2})\\in R^{2}, y=(y_1,y_2)\\in R^{2}"

1)"T(x+y)=T(x)+T(y)"

2)"T(\\alpha x)=\\alpha T(x)"


1)"T(x+y)=T(x_1+y_1,x_2+y_2)=(x_1+y_1)^{2}=x_1^2+2x_1y_1+y_1^2"

"T(x)=T(x_1,x_2)=x_1^2, T(y)=T(y_1,y_2)=y_1^2"

"T(x)+T(y)=x_1^2+y_1^2"

"T(x+y)\\not=T(x)+T(y)"

T is not a linear transformation


3b

"T(a,b,c)=a^3"

If T is a linear transformation then

"\\forall x=(x_1,x_2,x_3)\\in R^3, y=(y_1,y_2,y_3)\\in R^3"

"1)T(x+y)=T(x)+T(y)\\\\\n2) T(\\alpha x)=\\alpha T(x)"


"1) T(x+y)=T(x_1+y_1,x_2+y_2,x_3+y_3)=\\\\\n=(x_1+y_1)^3=x_1^3+3x_1^2y_1+3x_1y_1^2+y_1^3\\\\\nT(x)=T(x_1,x_2,x_3)=x_1^3"

"T(y)=T(y_1,y_2,y_3)=y_1^3\\\\\nT(x)+T(y)=x_1^3+y_1^3"

"T(x+y)\\not =T(x)+T(y)"

T is not a linear transformation


4

The characteristic equation has the form

"|A-\\lambda E|=\\begin{vmatrix}\n 6-\\lambda & 16 \\\\\n -1 & -4-\\lambda\n\\end{vmatrix}=0\\\\\n(6-\\lambda)(-4-\\lambda)+16=0\\\\\n-24-6\\lambda+4\\lambda+\\lambda^2+16=0\\\\\n\\lambda^2-2\\lambda-8=0\\\\\nD=4+4\\cdot8=36\\\\\n\\lambda_1=\\frac{2-6}{2}=\\frac{-4}{2}=-2\\\\\n\\lambda_2=\\frac{2+6}{2}=\\frac{8}{2}=4\\\\"

So, "\\lambda_1=-2, \\lambda_2=4" .

Find a vector "x=(x_1,x_2), x\\not=0" that satisfies the condition

"(A-\\lambda_1E)x=0\\\\\n1) \\lambda_1=-2\\\\\n\\begin{pmatrix}\n 8 & 16 \\\\\n -1 & -2\n\\end{pmatrix} \\cdot \\begin{pmatrix}\n x_1 \\\\\n x_2 \n\\end{pmatrix}=\\begin{pmatrix}\n 0 \\\\\n 0\n\\end{pmatrix}"

"\\left \\{ \n\\begin{matrix}\n 8x_1+16x_2=0 \\\\\n -x_1-2x_{2}=0\n\\end{matrix}\\right."

"x_1=-2x_2, x_2\\in R"

"x=(-2;1)"

"2)\\lambda_2=4\\\\\n\\begin{pmatrix}\n 2 & 16 \\\\\n -1 & -8\n\\end{pmatrix} \\cdot \\begin{pmatrix}\n x_1 \\\\\n x_2 \n\\end{pmatrix}=\\begin{pmatrix}\n 0 \\\\\n 0\n\\end{pmatrix}"

"\\left \\{ \n\\begin{matrix}\n 2x_1+16x_2=0 \\\\\n -x_1-8x_{2}=0\n\\end{matrix} \\right."

"x_1=-8x_2, x_2\\in R\\\\\nx=(-8;1)"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS