A R = A B + B R = 3 + 1 = 4 AR = AB+BR = 3+1 =4 A R = A B + BR = 3 + 1 = 4
by the cosine theorem: \text{by the cosine theorem:} by the cosine theorem:
Q R 2 = A R 2 + A Q 2 − 2 A R ∗ A Q ∗ cos ∠ A QR^2 = AR^2+AQ^2-2AR*AQ*\cos{\angle{A}} Q R 2 = A R 2 + A Q 2 − 2 A R ∗ A Q ∗ cos ∠ A
Q R 2 = 4 2 + 2 2 − 2 ∗ 4 ∗ 2 ∗ cos 6 0 0 = 12 QR^2 = 4^2+2^2-2*4*2*\cos{60^0}=12 Q R 2 = 4 2 + 2 2 − 2 ∗ 4 ∗ 2 ∗ cos 6 0 0 = 12
Q R = 12 = 2 3 QR =\sqrt{12}=2\sqrt{3} QR = 12 = 2 3
by the cosine theorem: \text{by the cosine theorem:} by the cosine theorem:
Q P 2 = C P 2 + C Q 2 − 2 C P ∗ C Q ∗ cos ∠ C QP^2 = CP^2+CQ^2-2CP*CQ*\cos{\angle{C}} Q P 2 = C P 2 + C Q 2 − 2 CP ∗ CQ ∗ cos ∠ C
C Q = A C − A Q = 3 − 2 = 1 CQ=AC-AQ=3-2=1 CQ = A C − A Q = 3 − 2 = 1
Q P 2 = 2 2 + 1 2 − 2 ∗ 2 ∗ 1 ∗ cos 6 0 0 = 3 QP^2 = 2^2+1^2-2*2*1*\cos{60^0}=3 Q P 2 = 2 2 + 1 2 − 2 ∗ 2 ∗ 1 ∗ cos 6 0 0 = 3
Q P = 3 QP=\sqrt {3} QP = 3
by the cosine theorem: \text{by the cosine theorem:} by the cosine theorem:
P R 2 = B P 2 + B R 2 − 2 B P ∗ B R ∗ cos ∠ ( R B P ) PR^2 = BP^2+BR^2-2BP*BR*\cos{\angle{(RBP)}} P R 2 = B P 2 + B R 2 − 2 BP ∗ BR ∗ cos ∠ ( RBP )
∠ ( R B P ) = 18 0 0 − ∠ B = 12 0 0 \angle{(RBP)}= 180^0-\angle{B}= 120^0 ∠ ( RBP ) = 18 0 0 − ∠ B = 12 0 0
B P = B C − C P = 3 − 2 = 1 BP = BC-CP = 3-2 =1 BP = BC − CP = 3 − 2 = 1
P R 2 = 1 2 + 1 2 − 2 ∗ 1 ∗ 1 ∗ cos 12 0 0 = 3 PR^2=1^2+1^2-2*1*1*\cos120^0=3 P R 2 = 1 2 + 1 2 − 2 ∗ 1 ∗ 1 ∗ cos 12 0 0 = 3
P R = 3 PR= \sqrt{3} PR = 3
Q R = P R + P Q QR = PR+PQ QR = PR + PQ
hence P lies strictly between R,Q \text{hence P lies strictly between R,Q} hence P lies strictly between R,Q
proven \text{proven} proven
Answer: proven \text{proven} proven
Comments
Leave a comment