ABC is an equilateral triangle of side 3 units. The points P, Q lie on BC, CA respectively and are such that AQ = CP = 2units. If the point R lies on AB produced
so that BR = 1unit, prove that P, Q, R are collinear
"AR = AB+BR = 3+1 =4"
"\\text{by the cosine theorem:}"
"QR^2 = AR^2+AQ^2-2AR*AQ*\\cos{\\angle{A}}"
"QR^2 = 4^2+2^2-2*4*2*\\cos{60^0}=12"
"QR =\\sqrt{12}=2\\sqrt{3}"
"\\text{by the cosine theorem:}"
"QP^2 = CP^2+CQ^2-2CP*CQ*\\cos{\\angle{C}}"
"CQ=AC-AQ=3-2=1"
"QP^2 = 2^2+1^2-2*2*1*\\cos{60^0}=3"
"QP=\\sqrt {3}"
"\\text{by the cosine theorem:}"
"PR^2 = BP^2+BR^2-2BP*BR*\\cos{\\angle{(RBP)}}"
"\\angle{(RBP)}= 180^0-\\angle{B}= 120^0"
"BP = BC-CP = 3-2 =1"
"PR^2=1^2+1^2-2*1*1*\\cos120^0=3"
"PR= \\sqrt{3}"
"QR = PR+PQ"
"\\text{hence P lies strictly between R,Q}"
"\\text{proven}"
Answer:"\\text{proven}"
Comments
Leave a comment