Answer to Question #159915 in Geometry for Mohammed

Question #159915

ABC is an equilateral triangle of side 3 units. The points P, Q lie on BC, CA re￾spectively and are such that AQ = CP = 2units. If the point R lies on AB produced

so that BR = 1unit, prove that P, Q, R are collinear


1
Expert's answer
2021-02-02T04:24:12-0500

AR=AB+BR=3+1=4AR = AB+BR = 3+1 =4

by the cosine theorem:\text{by the cosine theorem:}

QR2=AR2+AQ22ARAQcosAQR^2 = AR^2+AQ^2-2AR*AQ*\cos{\angle{A}}

QR2=42+22242cos600=12QR^2 = 4^2+2^2-2*4*2*\cos{60^0}=12

QR=12=23QR =\sqrt{12}=2\sqrt{3}

by the cosine theorem:\text{by the cosine theorem:}

QP2=CP2+CQ22CPCQcosCQP^2 = CP^2+CQ^2-2CP*CQ*\cos{\angle{C}}

CQ=ACAQ=32=1CQ=AC-AQ=3-2=1

QP2=22+12221cos600=3QP^2 = 2^2+1^2-2*2*1*\cos{60^0}=3

QP=3QP=\sqrt {3}

by the cosine theorem:\text{by the cosine theorem:}

PR2=BP2+BR22BPBRcos(RBP)PR^2 = BP^2+BR^2-2BP*BR*\cos{\angle{(RBP)}}

(RBP)=1800B=1200\angle{(RBP)}= 180^0-\angle{B}= 120^0

BP=BCCP=32=1BP = BC-CP = 3-2 =1

PR2=12+12211cos1200=3PR^2=1^2+1^2-2*1*1*\cos120^0=3

PR=3PR= \sqrt{3}

QR=PR+PQQR = PR+PQ

hence P lies strictly between R,Q\text{hence P lies strictly between R,Q}

proven\text{proven}

Answer:proven\text{proven}






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment