Solution :
First of all, let us find the distance between points P and C, Q and C and R and C. Here is the formula:
d = ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2 d = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} d = ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2
d 1 = ( ( − 5 ) − 2 ) 2 + ( 0 − 4 ) 2 = ( − 7 ) 2 + ( − 4 ) 2 = 49 + 16 = 65 d_1 = \sqrt{((-5) - 2)^2 + (0 - 4)^2} = \sqrt{(-7)^2 + (-4)^2} = \sqrt{49 + 16} = \sqrt{65} d 1 = (( − 5 ) − 2 ) 2 + ( 0 − 4 ) 2 = ( − 7 ) 2 + ( − 4 ) 2 = 49 + 16 = 65
d 2 = ( − 2 − 2 ) 2 + ( 3 − 4 ) 2 = ( − 4 ) 2 + ( − 1 ) 2 = 16 + 1 = 17 d_2 = \sqrt{(-2 - 2)^2 + (3 - 4)^2} = \sqrt{(-4)^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17} d 2 = ( − 2 − 2 ) 2 + ( 3 − 4 ) 2 = ( − 4 ) 2 + ( − 1 ) 2 = 16 + 1 = 17
d 2 = ( 6 − 2 ) 2 + ( − 11 − 4 ) 2 = ( 4 ) 2 + ( − 15 ) 2 = 16 + 225 = 241 d_2 = \sqrt{(6 - 2)^2 + (-11 - 4)^2} = \sqrt{(4)^2 + (-15)^2} = \sqrt{16 + 225} = \sqrt{241} d 2 = ( 6 − 2 ) 2 + ( − 11 − 4 ) 2 = ( 4 ) 2 + ( − 15 ) 2 = 16 + 225 = 241
Secondly, by definition a circle is:
r 2 = ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2 r^2 = (x_1 - x_0)^2 + (y_1 - y_0)^2 r 2 = ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2
r = ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2 = d 1 = d 2 = d 3 r = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} = d_1=d_2=d_3 r = ( x 1 − x 0 ) 2 + ( y 1 − y 0 ) 2 = d 1 = d 2 = d 3
Therefore, all points should be equidistant from point C
But in our case they are not:
65 ≠ 17 ≠ 241 , d 1 ≠ d 2 ≠ d 3 \sqrt{ 65} \neq \sqrt {17} \neq \sqrt {241}, d_1 \neq d_2 \neq d_3 65 = 17 = 241 , d 1 = d 2 = d 3
Therefore, these points do not lie on a circle
Answer :
Points P, Q, R do not lie on the circle with center C(2, 4) as they are not equidistant from point C
Comments