In a quadrilateral OABC, D is the midpoint of BC and E is the point on AD such that AE : ED = 2 : 1. Given that OA = A, OB = B, and OC = c express OD and OE in terms of a,b and c.
The question does not contain complete information that is needed to resolve it. Depending on angles "\\angle BOC" and "\\angle AOB" , the answer may be different. If we change these angles and and all conditions are done, OD and OE change. It is shown on the picture
Solution:
Introduce vectors: "\\overrightarrow{OA}=\\overrightarrow{a}" , "\\overrightarrow{OB}=\\overrightarrow{b}" , "\\overrightarrow{OC}=\\overrightarrow{c}" .
Then "\\overrightarrow{OD}=\\frac{\\overrightarrow{b}+\\overrightarrow{c}}{2}" (used BD = DC).
"\\overrightarrow{DA}=\\overrightarrow{a}-\\overrightarrow{OD}=\\overrightarrow{a}-\\frac{\\overrightarrow{b}+\\overrightarrow{c}}{2}=\\frac{2\\overrightarrow{a}-(\\overrightarrow{b}+\\overrightarrow{c})}{2}" .
AD and AM are medians. E is the point of the intersection of AD and AM. In this point each median divides as 2:1 (AE:AD = 2:1). That's why
"\\overrightarrow{DE}=\\frac13\\overrightarrow{DA}=\\frac{2\\overrightarrow{a}-(\\overrightarrow{b}+\\overrightarrow{c})}{6}"
"\\overrightarrow{OE}=\\overrightarrow{OD}+\\overrightarrow{DE}\n=\\frac{\\overrightarrow{b}+\\overrightarrow{c}}{2}-\\frac{2\\overrightarrow{a}-(\\overrightarrow{b}+\\overrightarrow{c})}{2}=\\frac{\\overrightarrow{a}+\\overrightarrow{b}+\\overrightarrow{c}}{3}"
"OD=|\\overrightarrow{OD}|=|\\frac{\\overrightarrow{b}+\\overrightarrow{c}}{2}|=\\frac12\\sqrt{(\\overrightarrow{b}+\\overrightarrow{c})^2}=\\frac12\\sqrt{b^2+c^2+2bc\\cos{\\angle{BOC}}}"
"OE=|\\overrightarrow{OE}|=|\\frac{\\overrightarrow{a}+\\overrightarrow{b}+\\overrightarrow{c}}{3}|=\\frac13\\sqrt{(\\overrightarrow{a}+\\overrightarrow{b}+\\overrightarrow{c})^2}="
"=\\frac13\\sqrt{a^2+b^2+c^2+2(ab\\cos{\\angle{AOB}}+bc\\cos{\\angle{BOC}}+ac\\cos{\\angle{AOC}})}"
An answer depends on angles "\\angle BOC" , "\\angle AOB" and "\\angle AOC = \\angle BOC+ \\angle AOB".
We are free to change them without breaking any condition (as shown on the picture). So these angles cannot be expressed in terms of a, b and c.
Comments
Leave a comment