Question #158915

In a quadrilateral OABC, D is the midpoint of BC and E is the point on AB such that AE:ED=2:1 , given that OA=a, OB=b and OC=c express OD and OE in terms of a,b and c


1
Expert's answer
2021-01-29T04:47:42-0500

Given that

OA:ED=2:1OA:ED=2:1

OA/E=2/1OA/E=2/1

So,

AB=OBOA=baAB=OB-OA=b-a

So ,

AE=AB/2=(ba)/2AE=AB/2=(b-a)/2

...Equation1...Equation 1

Similarly,

BC=bcBC=b-c

Then,

CD=(bc)/2CD=(b-c)/2

......Equation(2)...... Equation (2)

ODOC=CD=(bc)/2\therefore OD-OC=CD=(b-c)/2

ODOC=(bc)/2\therefore OD-OC=(b-c)/2

ODC=(bc)/2OD-C=(b-c)/2

OD=C+(b+c)/2=(b+c)/2OD=C+(b+c)/2=(b+c)/2



OD=(b+c)/2\therefore OD=(b+c)/2




Again,

OEOA=AEOE-OA=AE

OEOA=(ba)/2OE-OA=(b-a)/2

OEa=(ba)/2OE-a=(b-a)/2

(Given OA=a)

OE=(a+b)/2OE=(a+b)/2






OE=(a+b)/2OE=(a+b)/2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS