In a quadrilateral OABC, D is the midpoint of BC and E is the point on AB such that AE:ED=2:1 , given that OA=a, OB=b and OC=c express OD and OE in terms of a,b and c
Given that
"OA:ED=2:1"
"OA\/E=2\/1"
So,
"AB=OB-OA=b-a"
So ,
"AE=AB\/2=(b-a)\/2"
"...Equation 1"
Similarly,
"BC=b-c"
Then,
"CD=(b-c)\/2"
"...... Equation (2)"
"\\therefore OD-OC=CD=(b-c)\/2"
"\\therefore OD-OC=(b-c)\/2"
"OD-C=(b-c)\/2"
"OD=C+(b+c)\/2=(b+c)\/2"
"\\therefore OD=(b+c)\/2"
Again,
"OE-OA=AE"
"OE-OA=(b-a)\/2"
"OE-a=(b-a)\/2"
(Given OA=a)
"OE=(a+b)\/2"
"OE=(a+b)\/2"
Comments
Leave a comment