The points D, E and F divide the sides BC, CA and AB of a triangle in the ratio 1:4, 3:2 and 3:7 respectively. Show that there exists a point G such that the sum of the vectors AD, BE, CF is parallel to CG. What is the ratio in which G divides AB?
In triangle ABC, let A is zero vector.
B is "\\overrightarrow{b}" and C is "\\overrightarrow{c}" . D divides BC in 1:4 thus D is "\\frac{\\overrightarrow{c} + 4\\overrightarrow{b}}{5}" . Similarly E is "\\frac{2\\overrightarrow{c}}{5}." F is "\\frac{3\\overrightarrow{b}}{10}" .
Now adding AD +BE+CF, we get
"\\frac{\\overrightarrow{c}+\\overrightarrow{4b}}{5} - \\overrightarrow{0} + \\frac{\\overrightarrow{2c}}{5} - \\overrightarrow{b} + \\frac{\\overrightarrow{3b}}{10} - \\overrightarrow{c}"
"=\\frac{\\overrightarrow{b}}{10} - \\frac{\\overrightarrow{2c}}{5}"
Now we know that point G divides the AB so that let it's divides in ratio 1:k then "\\overrightarrow{G} = \\frac{\\overrightarrow{b}}{k+1}" and
"\\overrightarrow{CG} = \\frac{\\overrightarrow{b}}{k+1} - \\overrightarrow{c}" .
Now for k=3, "\\overrightarrow{CG} = \\frac{\\overrightarrow{b}}{4} - \\overrightarrow{c} ."
(2/5)"(\\overrightarrow{CG}) = \\frac{\\overrightarrow{b}}{10} - \\frac{\\overrightarrow{2c}}{5}" .
We can see that addition of AD +BE +CF is equals to "\\frac{2\\overrightarrow{CG}}{5}." Hence it proves that the above sum is parallel to CG and also G divides the AB in 1:3 .
Comments
Leave a comment