"SABCDE" is a regular pentagonal pyramid.
"ABCDE" is regular pentagon. "O" is the centre of "ABCDE"
Triangle "BOA"
"AB=40\\ cm, \\angle AOB=\\dfrac{360\\degree}{5}=72\\degree"
"OK\\perp AB, AK=\\dfrac{1}{2}AB=20\\ cm"
"\\sin36\\degree=\\dfrac{\\sqrt{10-2\\sqrt{5}}}{4}"
8. Right triangle "SAO"
Given "SA=50\\ cm"
"=\\dfrac{10\\sqrt{186-50\\sqrt{5}}}{\\sqrt{10-2\\sqrt{5}}}=10\\sqrt{\\dfrac{93-25\\sqrt{5}}{5-\\sqrt{5}}}\\approx"
"\\approx36.636\\ cm"
"S_{ABCDE}=5(\\dfrac{1}{2})(OK)(AB)=\\dfrac{5}{2}(AK\\tan36\\degree)(AB)="
"=\\dfrac{5}{4}(AB)^2\\tan36\\degree"
"\\sin36\\degree=\\dfrac{\\sqrt{10-2\\sqrt{5}}}{4}"
"\\cos^2 36\\degree=1-\\sin^236\\degree=1-\\dfrac{10-2\\sqrt{5}}{16}=\\dfrac{6+2\\sqrt{5}}{16}"
"\\tan^236\\degree=\\dfrac{10-2\\sqrt{5}}{6+2\\sqrt{5}}"
"S_{ABCDE}=\\dfrac{5}{4}(40cm)^2\\sqrt{\\dfrac{5-\\sqrt{5}}{3+\\sqrt{5}}}"
"V=\\dfrac{1}{3}S_{ABCDE}H="
"=\\dfrac{1}{3}(2000)\\sqrt{\\dfrac{5-\\sqrt{5}}{3+\\sqrt{5}}}(10\\sqrt{\\dfrac{93-25\\sqrt{5}}{5-\\sqrt{5}}})cm^3="
"=\\dfrac{20000}{3}\\sqrt{\\dfrac{93-25\\sqrt{5}}{3+\\sqrt{5}}}cm^3\\approx"
"\\approx17745.29cm^3\\approx1.8m^3"
Comments
Leave a comment