Question #144913
A concrete monument is a regular pentagonal pyramid with a base edge of
40 cm and one of its lateral edges measure 50 cm.

8. What is the monument’s altitude?
9. If the lateral surface of the monument is to be covered with glass, how much glass is needed?
1
Expert's answer
2020-11-17T17:18:12-0500

SABCDESABCDE is a regular pentagonal pyramid.

ABCDEABCDE is regular pentagon. OO is the centre of ABCDEABCDE

Triangle BOABOA

AB=40 cm,AOB=360°5=72°AB=40\ cm, \angle AOB=\dfrac{360\degree}{5}=72\degree

OKAB,AK=12AB=20 cmOK\perp AB, AK=\dfrac{1}{2}AB=20\ cm


OA=R=AKsin(AOB2)=20sin(72°2)cmOA=R=\dfrac{AK}{\sin(\dfrac{\angle AOB}{2})}=\dfrac{20}{\sin(\dfrac{72\degree}{2})}cm

sin36°=10254\sin36\degree=\dfrac{\sqrt{10-2\sqrt{5}}}{4}


OA=801025 cmOA=\dfrac{80}{\sqrt{10-2\sqrt{5}}}\ cm

8. Right triangle SAOSAO


H=SA2OA2H=\sqrt{SA^2-OA^2}

Given SA=50 cmSA=50\ cm


H=(50)2(801025)2 cm=H=\sqrt{(50)^2-(\dfrac{80}{\sqrt{10-2\sqrt{5}}})^2}\ cm=

=101865051025=109325555=\dfrac{10\sqrt{186-50\sqrt{5}}}{\sqrt{10-2\sqrt{5}}}=10\sqrt{\dfrac{93-25\sqrt{5}}{5-\sqrt{5}}}\approx

36.636 cm\approx36.636\ cm

9. Right triangle OAKOAK


OK=r=AKtan36°=2010255+1 cmOK=r=AK\tan36\degree=20\cdot\dfrac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}\ cm

Right triangle SKASKA

SK=SA2AK2=(50 cm)2(20 cm)2=SK=\sqrt{SA^2-AK^2}=\sqrt{(50\ cm)^2-(20\ cm)^2}=

=1021 cm=10\sqrt{21}\ cm

Slateral=5SABS=5(12)ABSK=S_{lateral}=5\cdot S_{ABS}=5\cdot(\dfrac{1}{2})AB\cdot SK=

=52401021 cm2=100021 cm2=\dfrac{5}{2}\cdot 40\cdot 10\sqrt{21}\ cm^2=1000\sqrt{21}\ cm^2\approx

4583 cm20.46 m2\approx4583\ cm^2\approx0.46 \ m^2

0.46 m20.46\ m^2 of glass.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS