Answer to Question #144683 in Geometry for patrick

Question #144683
A pyramid of height 15 ft is to be divided into three solids by passing
planes parallel to the base. Find the height of each solid if their volumes
are equal.
1
Expert's answer
2020-11-17T15:10:52-0500


The volume of whole this pyramide is:

V=13Sh=13S15=5SV=\frac{1}{3}Sh=\frac{1}{3}⋅S⋅15=5S

According to the conditions of the problem

V1=V2=V3V_1=V_2=V_3,

therefore

V=V1+V2+V3V=V_1+V_2+V_3

V=3V1V=3V_1

5S=3V15S=3V_1

V1=5S3V_1=\frac{5S}{3}

The volume of the top pyramide is:

V1=13S1h1V_1=\frac{1}{3}S_1h_1, therefore

5S3=13S1h1\frac{5S}{3}=\frac{1}{3}S_1h_1

5S=S1h15S=S_1h_1

h1=5SS1h_1=\frac{5S}{S_1} - it is the height of the top pyramide

Then

V1+V2=13S2(h1+h2)V_1+V_2=\frac{1}{3}S_2(h_1+h_2)

2V1=13S2(h1+h2)2V_1=\frac{1}{3}S_2(h_1+h_2)

2V1=13S2(5SS1+h2)2V_1=\frac{1}{3}S_2(\frac{5S}{S_1}+h_2) /3/⋅3

6V1=S2(5SS1+h2)6V_1=S_2(\frac{5S}{S_1}+h_2)

5SS1+h2=6V1S2\frac{5S}{S_1}+h_2=\frac{6V_1}{S_2}

h2=6V1S25SS1h_2=\frac{6V_1}{S_2}-\frac{5S}{S_1}

h2=65S3S25SS1h_2=\frac{6⋅\frac{5S}{3}}{S_2}-\frac{5S}{S_1}

h2=10SS25SS1h_2=\frac{10S}{S_2}-\frac{5S}{S_1} - it is the height of the middle solide

h3=15h1h2=155SS1(10SS25SS1)=h_3=15-h_1-h_2=15-\frac{5S}{S_1}-(\frac{10S}{S_2}-\frac{5S}{S_1})=

=155SS110SS2+5SS1=1510SS2=15-\frac{5S}{S_1}-\frac{10S}{S_2}+\frac{5S}{S_1}=15-\frac{10S}{S_2} - it is the height of the under solid


Solution: 5SS1\frac{5S}{S_1} ; 10SS25SS1\frac{10S}{S_2}-\frac{5S}{S_1} ; 1510SS215-\frac{10S}{S_2} .




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment