The volume of whole this pyramide is:
"V=\\frac{1}{3}Sh=\\frac{1}{3}\u22c5S\u22c515=5S"
According to the conditions of the problem
"V_1=V_2=V_3",
therefore
"V=V_1+V_2+V_3"
"V=3V_1"
"5S=3V_1"
"V_1=\\frac{5S}{3}"
The volume of the top pyramide is:
"V_1=\\frac{1}{3}S_1h_1", therefore
"\\frac{5S}{3}=\\frac{1}{3}S_1h_1"
"5S=S_1h_1"
"h_1=\\frac{5S}{S_1}" - it is the height of the top pyramide
Then
"V_1+V_2=\\frac{1}{3}S_2(h_1+h_2)"
"2V_1=\\frac{1}{3}S_2(h_1+h_2)"
"2V_1=\\frac{1}{3}S_2(\\frac{5S}{S_1}+h_2)" "\/\u22c53"
"6V_1=S_2(\\frac{5S}{S_1}+h_2)"
"\\frac{5S}{S_1}+h_2=\\frac{6V_1}{S_2}"
"h_2=\\frac{6V_1}{S_2}-\\frac{5S}{S_1}"
"h_2=\\frac{6\u22c5\\frac{5S}{3}}{S_2}-\\frac{5S}{S_1}"
"h_2=\\frac{10S}{S_2}-\\frac{5S}{S_1}" - it is the height of the middle solide
"h_3=15-h_1-h_2=15-\\frac{5S}{S_1}-(\\frac{10S}{S_2}-\\frac{5S}{S_1})="
"=15-\\frac{5S}{S_1}-\\frac{10S}{S_2}+\\frac{5S}{S_1}=15-\\frac{10S}{S_2}" - it is the height of the under solid
Solution: "\\frac{5S}{S_1}" ; "\\frac{10S}{S_2}-\\frac{5S}{S_1}" ; "15-\\frac{10S}{S_2}" .
Comments
Leave a comment