We have "h=15\\ \\text{m}, \\ \\ V=125 \\ \\text{m}^3."
1 . Let "a" be the base edge of this square pyramid.
Volume of the pyramid is "V=\\frac{1}{3} B h" , where "B=a^2" is area of base.
"V=\\frac{1}{3}a^2h"
"a^2=\\frac{3V}{h}"
"a=\\sqrt{\\frac{3V}{h}}= \\sqrt{\\frac{3\\times 125}{15}}=\\sqrt{25}=5"
2.Let "l" be the slant height of the pyramid.
Then "l=\\sqrt{h^2+\\left(\\frac{a}{2}\\right)^2}=\\sqrt{15^2+2.5^2}=\\sqrt{925\/4}=5\\sqrt{37}\/2\\approx 15.2\\ \\text{m}"
3.We can find the lateral area using formula "L=\\frac{1}{2}Pl" , where "P=4a" is the perimeter of the base, "l" is the slight height.
"L=\\frac{4al}{2}=\\frac{4\\times 5\\times 5\\sqrt{37}}{2\\times 2}=25\\sqrt{37}\\approx 152\\ \\text{m}^2" .
Answer: 1. "a=5\\ \\text{m}" , 2. "l=5\\sqrt{37}\/{2}\\approx 15.2\\ \\text{m}" , 3. "L=25\\sqrt{37}\\approx 152\\ \\text{m}^2" .
Comments
Leave a comment