"=54.5+17.5+36=108"
The right triangle "APH"
Let "AH=x, \\angle PAH=\\alpha." Then "\\tan(\\alpha)=\\dfrac{PH}{AH}=\\dfrac{36}{x}"
The right triangle "ABH"
"\\tan(2\\alpha)=\\dfrac{BH}{AH}=\\dfrac{108}{x}"
"\\tan(2\\alpha)=\\dfrac{2\\tan(\\alpha)}{1-\\tan^2(\\alpha)}=\\dfrac{108}{x}""\\dfrac{108}{x}=\\dfrac{2\\cdot\\dfrac{36}{x}}{1-(\\dfrac{36}{x})^2 }""1-(\\dfrac{36}{x})^2=\\dfrac{2}{3}"
"x=36\\sqrt{3}"
"\\alpha=30\\degree"
The right triangle "QCH"
Let "CH=y, \\angle QCH=\\beta." Then "\\tan(\\beta)=\\dfrac{QH}{CH}=\\dfrac{53.5}{y}"
The right triangle "BCH"
"\\tan(2\\beta)=\\dfrac{BH}{CH}=\\dfrac{108}{y}"
"\\tan(2\\beta)=\\dfrac{2\\tan(\\beta)}{1-\\tan^2(\\beta)}=\\dfrac{108}{y}""\\dfrac{108}{y}=\\dfrac{2\\cdot\\dfrac{53.5}{y}}{1-(\\dfrac{53.5}{y})^2 }""1-(\\dfrac{53.5}{y})^2=\\dfrac{107}{108}"
"(\\dfrac{y}{53.5})^2=108"
"y=321\\sqrt{3}"
Then
"AC=AH+CH=36\\sqrt{3}+321\\sqrt{3}=357\\sqrt{3}""S_{ABC}=\\dfrac{1}{2}BH\\cdot AC="
"=\\dfrac{1}{2}(108)(357\\sqrt{3})=19278\\sqrt{3}"
"S\\sqrt{3}=57834"
Comments
Leave a comment