Incentre "I" divides the angle bisector in a defined ratio of the length of sides of the triangle
"\\dfrac{AI}{IK}=\\dfrac{b+c}{a}"
"\\dfrac{BI}{IL}=\\dfrac{a+c}{b}"
Let "AN=x, BN=y, AL=p, CL=q, CK=v, BK=u."
An angle bisector of a triangle divides the opposite side into two segments that are proportional to the other two sides of the triangle.
"\\dfrac{q}{p}=\\dfrac{a}{c}, q+p=b"
"\\dfrac{u}{v}=\\dfrac{c}{b}, u+v=a"
Then
"u=\\dfrac{ac}{b+c}, v=\\dfrac{ab}{b+c}"
"p=\\dfrac{bc}{a+c}, q=\\dfrac{ab}{a+c}"
The ratios of areas of triangles ANL, BKN and CLK to the area of triangle ABC are equal to 5/33 , 9/44 and 5/12 respectively.
"\\dfrac{uy}{ac}=\\dfrac{9}{44}"
"\\dfrac{vq}{ab}=\\dfrac{5}{12}"
Then
"\\dfrac{ac}{b+c}\\cdot \\dfrac{ac}{a+b}=\\dfrac{9}{44}ac"
"\\dfrac{ab}{b+c}\\cdot \\dfrac{ab}{b+c}=\\dfrac{5}{12}ab"
Let "\\dfrac{b}{a}=z, \\dfrac{c}{a}=w." We have
"w=\\dfrac{9}{44}(z+w)(1+z)"
"z=\\dfrac{5}{12}(z+w)(1+w)"
"\\dfrac{9}{44}(z+w)(1+z)\\cdot\\dfrac{5}{12}(z+w)(1+w)=\\dfrac{5}{33}(1+w)(1+z)"
"(z+w)^2=\\dfrac{16}{9}"
"z=\\dfrac{4}{3}-w"
Substitute
"w=\\dfrac{7}{11}-\\dfrac{3}{11}w"
"w=\\dfrac{1}{2}"
"z=\\dfrac{4}{3}-\\dfrac{1}{2}=\\dfrac{5}{6}"
"\\dfrac{AI}{IK}=\\dfrac{b+c}{a}=z+w=\\dfrac{4}{3}"
"\\dfrac{AI}{IK}=\\dfrac{4}{3}"
Comments
Leave a comment