The alternate segment theorem states that an angle between a tangent and a chord through the point of contact is equal to the angle in the alternate segment.
"\\angle CKA=\\dfrac{1}{2}\\stackrel \\frown {KA}=\\angle KBA"
"\\triangle KAH\\sim \\triangle BKD=>\\dfrac{AK}{BK}=\\dfrac{KH}{BD}"
"\\triangle KBH\\sim \\triangle AKC=>\\dfrac{BK}{AK}=\\dfrac{KH}{AC}"
"\\dfrac{KH}{BD}=\\dfrac{AC}{KH}=>KH=\\sqrt{AC\\cdot BD}"
"BK=\\dfrac{AK\\cdot KH}{AC}=\\dfrac{10\\cdot 3\\sqrt{6}}{6}=5\\sqrt{6}"
By the Pythagorean Theorem
"AH=\\sqrt{AK^2-KH^2}=\\sqrt{(10)^2-(3\\sqrt{6})^2}=\\sqrt{46}"
"=\\dfrac{1}{2}(\\sqrt{46}+4\\sqrt{6})3\\sqrt{6}=\\sqrt{69}+36\\approx44"
The area of triangle AKB is 44 square units.
Comments
Leave a comment